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Abstract

We investigate graphs whose signless Laplacian matrix has three distinct eigenvalues. We
show that the largest signless Laplacian eigenvalue of a connected graph G with three distinct
signless Laplacian eigenvalues is noninteger if and only if G = Kn−e for n ≥ 4, where Kn−e

is the n vertex complete graph with an edge removed. Moreover, examples of such graphs
are given.
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1 Introduction

In this paper, we are only concerned with undirected simple finite graphs. Let G be a graph
of order n and with the vertex set {v1, . . . , vn}. The adjacency matrix of G is an n× n matrix
A(G) whose (i, j)-entry is 1 if vi is adjacent to vj and is 0, otherwise. Assume that D(G) is the
n× n diagonal matrix whose (i, i)-entry is the degree of vi (the number of vertices adjacent to
vi). The matrices L(G) = D(G) − A(G) and Q(G) = D(G) + A(G) are called the Laplacian

matrix and signless Laplacian matrix of G, respectively. Since A(G), L(G) and Q(G) are real
symmetric matrices, their eigenvalues are real numbers. The eigenvalues of A(G), L(G) and
Q(G) are said to be A-eigenvalues, L-eigenvalues and Q-eigenvalues of G, respectively.

1This research was in part supported by a grant from IPM (No.88050012).
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Graphs with few distinct eigenvalues form an interesting class of graphs and possess nice
combinatorial properties. Clearly, if all A-eigenvalues (L-eigenvalues, Q-eigenvalues) of a graph
coincide, then it is trivial (i.e. a graph with no edges). It is also straightforward to see that
connected graphs with only two distinct A-eigenvalues (L-eigenvalues, Q-eigenvalues) are com-
plete graphs. Regular graphs with three distinct A-eigenvalues (L-eigenvalues, Q-eigenvalues)
are precisely strongly regular graphs and therefore graphs with three distinct eigenvalues can be
considered as a generalization of strongly regular graphs. For results on graphs with few distinct
A-eigenvalues, we refer the reader to [1, 2, 3, 6, 7, 8, 10, 12] and on graphs with few distinct
L-eigenvalues to [9, 13]. In this paper, we investigate graphs with three distinct Q-eigenvalues
and show that the largest Q-eigenvalue of a connected graph G is noninteger if and only if
G = Kn − e for n ≥ 4. Moreover, using the join operation of graphs, we give some infinite
families of nonregular graphs with three distinct Q-eigenvalues.

Let us recall some definitions and notation to be used throughout the paper. For a graph
G, the complement of G, denoted by G, is the graph on the vertex set of G such that two
vertices of G are adjacent if and only if they are not adjacent in G. If G1 and G2 are vertex
disjoint graphs, then their union G1 + G2 is the graph whose vertex set (edge set) is the union
of vertex sets (edge sets) of G1 and G2. We denote the star of order n, the complete graph of
order n and the complete bipartite graph with two parts of sizes m and n, by Sn, Kn and Km, n,
respectively. The n× n identity matrix and the m× n all one matrix will be denoted by In and
Jm×n, respectively. We drop the subscripts whenever there is no danger of confusion.

2 Some preliminary results

In this section, we present some useful facts on graphs with three distinct Q-eigenvalues. The
first lemma results in that the diameter of such graphs is 2.

Lemma 1 [4] Let G be a graph with r distinct Q-eigenvalues and diameter d. Then d ≤ r− 1.

By the above lemma, a connected bipartite graph with three distinct Q-eigenvalues must be
complete bipartite. Since Km, n has Q-spectrum {[0]1, [m]n−1, [n]m−1, [m + n]1} (see Theorem 3
of Section 4), we have the following characterization.

Lemma 2 A connected bipartite graph G has three distinct Q-eigenvalues if and only if it is Sn

or Kn, n for some n.

By the Perron-Frobenius theorem, the largest Q-eigenvalue of a connected graph is simple
and the entries of any corresponding eigenvector are positive (a Perron-Frobenius eigenvector)
[5].
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Theorem 1 Let G be a connected graph with three distinct Q-eigenvalues q1 > q2 > q3 and

vertex set {v1, v2, . . . , vn}. Let di denote the degree of vertex vi. Then there exists a Perron-

Frobenius eigenvector αt = (α1, α2, . . . , αn) such that

(i) (Q(G)− q2I)(Q(G)− q3I) = ααt,

(ii) d2
i + di − (q2 + q3)di + q2q3 = α2

i ,

(iii) di + dj + λij − (q2 + q3) = αiαj , where λij is the number of common neighbors of two

adjacent vertices vi and vj ,

(iv) µij = αiαj is the number of common neighbors of two nonadjacent vertices vi and vj .

Proof (i) Since the minimal polynomial of Q(G) is (x− q1)(x− q2)(x− q3), we have (Q(G)−
q1I)B = 0, where B = (Q(G)−q2I)(Q(G)−q3I). Let βt = (β1, β2, . . . , βn) be a Perron-Frobenius
eigenvector of Q(G). Since q1 is a simple eigenvalue, each column of B is a multiple of β. Let
Cj = tjβ be the j-th column of B. Since B is a symmetric matrix, there exists a real number c

such that ti/βi = c for each 1 ≤ i ≤ n. By Lemma 1, the diameter of G is 2. If vi and vj are
two nonadjacent vertices, then (i, j)-th entry of B is positive and so tj > 0. This concludes that
c > 0 and B = cββt. Now let α =

√
cβ. Then we have (Q(G) − q2I)(Q(G) − q3I) = ααt. The

remaining parts easily follow. ¤

A partition σ = {V1, V2} of the vertex set of a graph G is called an equitable partition, if for
any v ∈ Vi, 1 ≤ i ≤ 2, the number mij = |NG(v) ∩ Vj |, 1 ≤ j ≤ 2, depends only on i, j, where
NG(v) is the set of neighbors of v. A graph whose vertices have only two distinct possibilities
k1 and k2 for degree is said to be (k1, k2)-regular.

Lemma 3 Let Vi, 1 ≤ i ≤ 2, be the set of vertices of degree ki of a (k1, k2)-regular graph G

with three distinct Q-eigenvalues. Then σ = {V1, V2} is an equitable partition for G.

Proof We use the notation of Theorem 1. Suppose that ti, 1 ≤ i ≤ 2, is an entry corresponding
to the vertices of degree ki of α. Let 1 ≤ i ≤ 2. Let v be a vertex of degree ki and let
mij = |NG(v)∩Vj | for 1 ≤ j ≤ 2. Then mi1 +mi2 = ki. On the other hand, from Q(G)α = q1α,
we have mi1t1 + mi2t2 + kiti = q1ti. It follows that mij is independent of v. ¤

Example 1 Using Theorem 3 of Section 4, it is a straightforward task to compute the Q-
eigenvalues of the graphs Kn− e, Sn and K1 + 2K3. They have Q-spectra {[n−2]n−2, [(3n−6±√

n2 + 4n− 12)/2]1}, {[0]1, [1]n−2, [n]1} and {[1]1, [4]5, [9]1}, respectively, where the exponents
represent multiplicities. These graphs are (k1, k2)-regular graphs with (k1, k2) = (n − 1, n −
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2), (n− 1, 1) and (6, 4), respectively. Let Vi, 1 ≤ i ≤ 2, be the set of vertices of degree ki. It is
clear that σ = {V1, V2} is an equitable partition for each of the mentioned graphs with

[
m11 m12

m21 m22

]
=

[
n− 3 2
n− 2 0

]
,

[
0 n− 1
1 0

]
,

[
0 6
1 3

]
,

respectively.

3 The largest Q-eigenvalue

In this section, we determine when the largest Q-eigenvalue of a connected graph G with three
distinct Q-eigenvalues is noninteger. The main result is that such a graph is necessarily Kn − e

for n ≥ 4.

Theorem 2 Let G be a connected graph of order n ≥ 4. Then G has a Q-eigenvalue c of

multiplicity n− 2 if and only if G is one of the graphs Kn − e, Sn,Kn/2,n/2, K3 + S4, K1 + 2K3.

Proof Let G have a Q-eigenvalue c of multiplicity n− 2. It is obvious that c is integer and G

has three distinct eigenvalues. If G is regular, then it is a strongly regular graph and so by the
absolute bound either n ≤ 2 or G is tKm for some t and m. Since n ≥ 4 and Q-spectrum of
tKm is {[tm− 2m]t−1, [tm−m]tm−t, [2tm− 2m]1}, it follows that G = Kn/2,n/2.

Now let G be nonregular. Let u and v be two adjacent vertices of G whose degrees are d1

and d2, respectively such that d1 6= d2. If (d1 − c)(d2 − c) = 1, then either d1 = d2 = c + 1 or
d1 = d2 = c− 1, a contradiction. Hence (d1 − c)(d2 − c) 6= 1. By the fact that every symmetric
matrix of rank k has a full rank principal submatrix of order k, we may assume that

Q(G)− cI =




d1 − c 1 J1×r 0 J1×t

1 d2 − c 0 J1×s J1×t

Jr×1 0 x1Jr×r x2Jr×s x3Jr×t

0 Js×1 x2Js×r y1Js×s y2Js×t

Jt×1 Jt×1 x3Jt×r y2Jt×s (x3 + y2)Jt×t




,

where
(a) x1 = d2−c

(d1−c)(d2−c)−1 , x2 = −1
(d1−c)(d2−c)−1 , y1 = d1−c

(d1−c)(d2−c)−1 , x3 = x1 + x2, y2 = x2 + y1;
(b) d1 = 1 + r + t, d2 = 1 + s + t;
(c) 1 + (r − 1)x1 + sx2 + tx3 = x1 + c, if r > 0;
(d) 1 + rx2 + (s− 1)y1 + ty2 = y1 + c, if s > 0;
(e) 2 + rx3 + sy2 + (t− 1)(x3 + y2) = x3 + y2 + c, if t > 0.

Notice that if there exists a vertex w which is adjacent to none of the vertices u and v,
then the row of Q(G) − cI corresponding to w (which is a linear combination of the first two
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rows) should be zero vector, a contradiction to the connectedness of G. The equations in (a) are
obtained by the fact that any row of Q(G)− cI is a linear combination of the first two rows. For
example, x1, x2, x3 are easily computed by considering the third row as a linear combination of
the first two rows. Since d1 6= d2, with no loss of generality, we may let r > 0. Also note that we
use the equations for y1 and y2 in (a) only when s > 0 or t > 0. Consider the following cases.

(i) s > 0. By (a), x2 = 1 and so (d1 − c)(d2 − c) = 0. With no loss of generality, assume
that d1 = c. Then by (a), y1 = 0, x1 = c− d2, y2 = 1 and x3 = c− d2 + 1. First let t = 0. Then
r 6= s and by (b),(c), we obtain (r − 3)(r − s) = 0 which yields that r = 3. This in turn implies
x1 = 1, c = d1 = r + 1 = 4 and so s = d2 − 1 = c− x1 − 1 = 2. Therefore, G = K3 + S4. Next
let t > 0. Then x3 = 0 which gives d2 = c+1 and so x1 = −1. This concludes that r = 1. From
(b), we have c = 2 + t and c + 1 = 1 + s + t which imply s = 2. From (c), we have c = 4 and so
t = 2. Again we find G = K3 + S4.

(ii) s = 0 and t > 0. If x3 = 0, then d2 = c + 1 which implies y2 = 1 by (a) and c = t

by (b). From x1 = 1/(d1 − c − 1), it follows that d1 = c + 2 and hence r = 1. By (c), we
obtain c = t = 0, a contradiction. Therefore, x3 = 1. We have (d2 − c) = (d1 − c)(d2 − c) and
x1 = (d2 − c)/(d2 − c − 1). Hence, d2 − c = 0 or d2 − c = 2. However, the latter is impossible
since otherwise d2 = c+2 < d1 = c+1, a contradiction. Therefore, d2 = c. From this, we obtain
c = t + 1 and y2 = 1 − r. Then by (e), c(1 − r) = 4(1 − r). If r = 1, then G = Kn − e. So let
c = 4 and r > 1. Since t = 3, we necessarily have r = 2. It results in that G = K1 + 2K3.

(iii) s = 0 and t = 0. Then G is Sn with Q-spectrum {[0]1, [1]n−2, [n]1} or G is K1 + Sn−1.
In the latter case, by choosing another candidates for u and v, we have case (ii).

The converse is straightforward using the results in the above paragraphs and Example 1. ¤

Corollary 1 The largest Q-eigenvalue of a connected graph G with three distinct Q-eigenvalues

is noninteger if and only if G = Kn − e for n ≥ 4.

Proof Let G be a connected graph of order n with three distinct Q-eigenvalues and let the
largest Q-eigenvalue of G be noninteger. Obviously, n ≥ 4 and G has a Q-eigenvalue c of
multiplicity n−2. By Theorem 2, G is one of the graphs Kn−e, Sn,Kn/2,n/2, K3 + S4, K1 + 2K3.
The Q-spectra of Kn−e, Sn, and K1 + 2K3 are given in Example 1 and by Theorem 3 of Section
4, Q-spectra of K3 + S4 and Kn/2,n/2 are {[1]1, [4]5, [9]1} and {[0]1, [n/2]n−2, [n]1}, respectively.
It follows that G must be Kn − e. The converse is trivial. ¤

4 Examples of three distinct Q-eigenvalue graphs

It seems impossible to give a complete characterization of nonregular graphs with three distinct
Q-eigenvalues. Examples like K3 + S4, K1 + 2K3, Kn − e and Sn were given in the previous
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sections. Here, we introduce more examples of such graphs. The join of graphs G1 and G2 is
the graph G1 ∨G2 obtained from G1 + G2 by joining each vertex of G1 with every vertex of G2.
Let P (M,x) denote the characteristic polynomial of the matrix M .

Theorem 3 [11] For i = 1, 2, let Gi be a ri-regular graph on ni vertices and let G1 and G2 be

vertex disjoint. Then

P (Q(G1 ∨G2), x) =
P (Q(G1), x− n2)P (Q(G2), x− n1)

(x− 2r1 − n2)(x− 2r2 − n1)
f(x),

where f(x) = x2 − (2(r1 + r2) + (n1 + n2))x + 2(2r1r2 + r1n1 + r2n2).

In the sequel, using Theorem 3, we give examples of nonregular graphs with three distinct
Q-eigenvalues. Note that by Theorem 1, Gi must be strongly regular graph (see below for
definition) or K1 for i = 1, 2.

Example 2 Let G1 = 2Kn and G2 = Kn. Then by Theorem 3, G1 ∨G2 has exactly 3 distinct
Q-eigenvalues: [5n− 2]1, [3n− 2]n, [2n− 2]2n−1.

Example 3 Let G1 = 2Kn1 (n1 > 1) and G2 = n2K1. Then by Theorem 3, G1 ∨ G2 has
three distinct Q-eigenvalues if and only if (n1, n2) = (4, 2) and in this case the Q-eigenvalues are
[12]1, [8]2, [4]7.

A cone over a graph G is defined as the graph K1 ∨ G. A strongly regular graph with
parameters (n, k, λ, µ) is a k-regular graph of order n such that any two adjacent vertices have
λ common neighbors and any two nonadjacent vertices have µ common neighbors. By Theorem
3, we have the following lemma.

Lemma 4 Let G be a cone over a connected strongly regular graph with parameters (n, k, λ, µ).
Then G has exactly 3 distinct Q-eigenvalues if and only if for t = (λ− µ)2 + 4(k − µ) we have

n− λ + µ− 1 ∈ {±
√

t +
√

(2k + n + 1)2 − 8nk}.

Example 4 Using Lemma 4, the cones over the strongly regular graphs with parameters
(6, 3, 0, 3) (the Utility graph), (9, 4, 1, 2), (10, 6, 3, 4) (the 5-triangle graph) and (10, 3, 0, 1) (the
Petersen graph) have exactly 3 distinct Q-eigenvalues. Letting 0 ≤ λ < k < n < 10000 and
µ = (k(k − λ− 1))/(n− k − 1), an easy computer search on parameters shows that there is no
other set of parameters (n, k, λ, µ) satisfying the condition of the above lemma for n < 10000.
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