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Abstract

All equivalence classes of Hadamard matrices of order at most 28 have been found by 1994.
Order 32 is where a combinatorial explosion occurs on the number of Hadamard matrices.
We find all equivalence classes of Hadamard matrices of order 32 which are of certain types.
It turns out that there are exactly 13,680,757 Hadamard matrices of one type and 26,369
such matrices of another type. Based on experience with the classification of Hadamard
matrices of smaller order, it is expected that the number of the remaining two types of these
matrices, relative to the total number of Hadamard matrices of order 32, to be insignificant.

AMS Subject Classification: 05B20, 05B05, 05B30.
Keywords: Hadamard matrices, classification of combinatorial objects, isomorph-free gen-
eration, orderly algorithm.

1 Introduction

A Hadamard matrix of order n is a (−1, 1) square matrix H of order n such that HHt = nI,
where Ht is the transpose of H and I is the identity matrix. It is well known that the order
of a Hadamard matrix is 1,2 or a multiple of 4. The old Hadamard conjecture states that the
converse also holds, i.e. there is a Hadamard matrix for any order which is divisible by 4. Order
668 is the smallest for which the existence of a Hadamard matrix is in doubt [11]. For surveys
on Hadamard matrices, we refer the reader to [1, 7, 19].
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Two Hadamard matrices are called equivalent if one is obtained from the other by a sequence
of permutations and negations of rows and columns. The equivalence classes of Hadamard
matrices for small orders have been determined by several authors. It is well known that for any
order up to 12, there is a unique Hadamard matrix. For orders 16,20,24,28, there exist 5 [5], 3
[6], 60 [8, 15] and 487 [13, 14, 16, 21] inequivalent Hadamard matrices, respectively. The order
32 is where a combinatorial explosion occurs on the number of Hadamard matrices.

Our main objective in this paper is to determine all equivalence classes of Hadamard matrices
of order 32 which are of type zero (see below for the definition of types). In order 32, any
Hadamard matrix is of one of the types 0,1,2 or 3. A classification of Hadamard matrices of
type one will follow from the classification of type zero. We choose to apply an orderly algorithm
to perform the classification. Orderly algorithms are based on the notion of canonical form. We
introduce a new canonical form for Hadamard matrices of type zero which is crucial to make
the classification computationally possible. It turns out that there are exactly 13,680,757 such
matrices of type zero and 26,369 matrices of type one. Our experience shows that a classification
of Hadamard matrices of types 2 and 3 using a similar method is very time consuming and
practically impossible. Based on data of smaller orders, it is expected that the number of the
remaining two types of these matrices, relative to the total number of Hadamard matrices of
order 32, to be insignificant.

2 Types

Let H be a Hadamard matrix of order n. Let jm denote the all one column vector of dimension
m. By permutation and negation of rows and columns, if necessary, any four columns of H may
be transformed uniquely to the following form:




ja ja ja ja

jb jb jb −jb

jb jb −jb jb

ja ja −ja −ja

jb −jb jb jb

ja −ja ja −ja

ja −ja −ja ja

jb −jb −jb −jb




, (1)

where a + b = n/4 and 0 ≤ b ≤ bn/8c. Following [14], any set of four columns which is
transformed to the above form is said to be of type b. Note that any permutation and negation
of rows and columns leaves the type unchanged. A Hadamard matrix is of type b (0 ≤ b ≤ bn/8c),
if it has a set of four columns of type b and no set of four columns of type less than b. The
following lemma is due to Kimura [14].
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Lemma 1 There is no Hadamard matrix of order n and type zero, if n ≡ 4 (mod 8).

We have a similar result for n ≡ 0 (mod 8).

Lemma 2 There is no Hadamard matrix of order n and type n/8, if n ≡ 0 (mod 8).

Proof. Let H be a Hadamard matrix of order n and type n/8. Without loss of generality we
may assume that the first three columns of H are as follows:




jm jm jm

jm jm −jm

jm −jm jm

jm −jm −jm


 , (2)

where m = n/4. Let c be any other column of H. Then, the sum of entries at the positions
(i− 1)m + 1 to im of c is zero for i = 1, 2, 3, 4. Now, the column vector [jm − jm − jm jm]t is
orthogonal to all column vectors of H which leads to a contradiction. ¤

We thus conclude that in order 32 any Hadamard matrix is necessarily of type 0,1,2 or 3.
The following lemma is proved in [16] (see also [13]).

Lemma 3 Let H be a type one Hadamard matrix of order n, n ≡ 4 (mod 8). Then Ht is of
type one.

Similarly, for the case n ≡ 0 (mod 8), we have the following lemma due to W. P. Orrick
(private communication). The lemma shows that a classification of Hadamard matrices of type
zero would yield a classification of type one matrices. The proof of the lemma relies on the
fact that by (1), a set of four columns of a Hadamard matrix is of type zero if and only if the
4-dimensional row vectors obtained from these columns take only four different possibilities up
to vector negation.

Lemma 4 Let H be a type one Hadamard matrix of order n, n ≡ 0 (mod 8). Then Ht is of
type zero.

Proof. Let n = 4m. Without loss of generality we may assume that the first four columns
of H are in the form (1), where a = m − 1 and b = 1. We show that the set S of columns
m,m+1, 2m+1, 4m in Ht is of type zero. Let e = (e1, e2, . . . , en)t be any column of H distinct
from the first four columns and assume that a = em, b = em+1, c = e2m+1 and d = e4m. Let
x =

∑m
i=1 ei. Note that m is even, and so is x. Since e is orthogonal to the first three columns

of H, we have x = −∑2m
i=m+1 ei = −∑3m

i=2m+1 ei =
∑4m

i=3m+1 ei. Now since e is also orthogonal
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to the fourth column of H, we obtain 2x− a+ b+ c− d = 0. Therefore, x = 0,±2 which implies
that (a, b, c, d) ∈ {(1, 1, 1, 1), (1, 1,−1,−1), (1,−1, 1,−1), (1,−1,−1, 1)} up to vector negation.
It now follows that the 4-dimensional row vectors obtained from S take only four possibilities
up to vector negation. Hence, S is of type zero and the assertion is immediate. ¤

The number of Hadamard matrices of order 4m (m < 8) for different types is shown in Table
1. We have used the library of Hadamard matrices given in [20] to compile this table. Note that
for orders 24 and 28, the transpose of the unique matrix of type 2 is also of type 2.

Table 1 Number of Hadamard matrices of different types

Order 4 8 12 16 20 24 28

0 1 1 0 5 0 58 0
Type 1 0 0 1 0 3 1 486

2 0 0 0 0 0 1 1

3 Canonical form

The isomorph-free exhaustive generation of combinatorial objects is an important topic in com-
binatorics (see [9, 17]). For a specific family of objects with given properties, the objective is to
generate a representative for each of the isomorphism classes of objects. Any algorithm for an
isomorph-free exhaustive generation in general involves two parallel routines. These constitute
the construction of objects and the rejection of isomorphic copies of objects. The two routines
are usually performed parallel to each other with interactions. For the construction phase, the
most natural and widely used method is backtracking which has quite an old history, see for
example [4, 23]. The method in its general form can be found in many textbooks including
[9]. For the isomorph rejection, the simplest and most natural method is the so called orderly
generation which was independently introduced by Read [18] and Faradžev [3] in the 1970s.
Algorithms based on this scheme are called orderly algorithms. The method involves the notion
of canonical form of objects. A canonical form is a special representative for each isomorphism
class (equivalence class in the case of Hadamard matrices) and the main objective in the process
of classification is to generate these special representatives. Each representative is constructed
step by step (via an algorithm such as backtracking) and the canonicity is defined in such a way
that all the constructed subobjects are also in the canonical form.

In order to generate Hadamard matrices we choose to apply a backtrack procedure to con-
struct these objects row by row along with an orderly algorithm to eliminate equivalent solutions.
We begin by defining a natural canonical form in the context of Hadamard matrices. First we
need to define a lexicographical order < on the set of all m by n (−1, 1) matrices where m and n

are two positive integers. Let A = [aij ] and B = [bij ] be two (−1, 1) matrices of order m×n. We
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say that A < B if for some 1 ≤ i ≤ m, the first corresponding i−1 rows are the same in the two
matrices and there is a j, 1 ≤ j ≤ n such that aij = −bij = −1 and aik = bik for all 1 ≤ k < j.
A (−1, 1) matrix M of order m × n is said to be in natural canonical form if M ′ ≤ M for any
matrix M ′ which is obtained from the permutations and/or negations of rows and columns of
M . It is natural to use this canonical form to classify all Hadamard matrices of a given order
via the orderly method. Spence [21] classified Hadamard matrices of order 24 and 28 using the
modified version of this canonical form for (0, 1) matrices. Our experience showed that applying
the same method for Hadamard matrices of order 32 leads to prohibitive computations. Thus
we were forced to consider a modified definition of natural canonical form.

Let H be a Hadamard matrix of order n and of type zero. Trace the entries of H (from top
to bottom in columns and from left to right in rows) in the following manner to make a row
vector VH of dimension n2 from H: Column 1, column 2, column 3, column 4, the remaining
entries in row 1, the remaining entries in row 2, ..., the remaining entries in row n. We say that
H is in the canonical form if

VQ ≤ VH

for any matrix Q equivalent to H. Note that VQ and VH are considered as matrices and the
order is the one defined above. The main features of this canonical form are as follows.

Lemma 5 Let H be a Hadamard matrix of order 4m and of type zero which is in the canonical
form. Then

(i) The rows and columns of H are in decreasing order.

(ii) The first four columns of H are in the following form:



jm jm jm jm

jm jm −jm −jm

jm −jm jm −jm

jm −jm −jm jm


 .

(iii) The first three rows of H are in the following form:



jt
m jt

m jt
m jt

m

jt
m jt

m −jt
m −jt

m

jt
m −jt

m jt
m −jt

m


 .

(iv) In each column, except for the first four columns, there are m/2 ones and m/2 minus ones
at the positions (i− 1)m + 1 to im for i = 1, 2, 3, 4.

(v) Let Vi be a vector whose k-th component is the (k + 4)-th entry of the (im + 1)-th row of
H for i = 1, 2, 3. Then V3 < V2 < V1.
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Remark 1 Note that with this definition of canonical form one of the basic properties of the
natural canonical form, namely, the canonicity of the submatrices formed from the first top rows
of H is no longer valid.

4 Search for type zero

In this section we present an orderly algorithm to generate all equivalence classes of type zero
Hadamard matrices of order 32. The algorithm will eventually produce the canonical form, as
defined in the previous section, for every equivalence class. Before starting the main search,
there is a need for some preliminary computations.

Let H denote the canonical form of a Hadamard matrix of order n = 32 which is of type
zero. Let H8 be the partial Hadamard submatrix consisting of the first eight rows of H. We
find all possible candidates for H8. From Lemma 5 the first four columns and the first three
rows of H8 are uniquely determined. We then fill the rest of H8, using Lemma 5(i) and the
fact that H8 should be a partial Hadamard matrix. Finally, the solutions are checked to be in
the canonical form (the canonicity test is explained below). As a result, we find a total of 31
candidates for H8. We label these as H30

8 < H29
8 < · · · < H0

8 . We need an invariant σ to identify
each of H i

8. For any 0 ≤ i ≤ 30, we partition the set of columns of H i
8 in such a way that any

two columns belong to the same part if and only if they are identical (as column vectors) and
define σ(H i

8) to be a four dimensional vector (x1, x2, x3, x4), where xj (1 ≤ j ≤ 4) is the number
of parts of size j. This is not necessarily a total invariant. For example, H21

8 and H22
8 have the

same corresponding vector (12, 8, 0, 1). One may introduce a total invariant to distinguish H i
8,

but this particular invariant has the advantage of being easy to compute and works well for our
purpose. There is also a need to find and retain some automorphisms of H i

8: Permute the rows
of H i

8, multiply the columns if necessary to make sure that the first row constitutes of only ones
and then sort the columns in decreasing order. For each permutation of the rows, we retain the
corresponding column permutation and the negation vector if the resulting matrix is the same
as H i

8.

We are now ready to describe the search method. Each of H i
8, i = 0, 1, . . . , 30, should be

extended to all possible choices of H. This process involves two ingredients; the generation of
the matrix and the canonicity test. These two parts of the extension process must be executed
simultaneously. There are 24 rows to fill in the generation phase. At each generation step all
possible candidates for the corresponding row of H are obtained. The candidates are chosen
in such a fashion that they fulfill the properties provided by Lemma 5. In reference to part
(iv) of Lemma 5 one can also apply Denny’s observation (see [2]) to speed up the search: Let
8(i− 1) + 1 ≤ j ≤ 8i for some 2 ≤ i ≤ 4. Then the row j must be chosen such that the leftmost
1 is placed in the first column with less than four ones at positions 8(i− 1) + 1 to j − 1.

Next we explain the canonicity test. The basic idea of the canonicity test that we use here
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has first been introduced in [12]. The general scheme, bypassing the details, for the canonicity
test of the constructed matrix H is as follows. Since H is constructed using Lemma 5, by part
(ii) of this lemma, the rows of H are partitioned into four blocks, say Hj (1 ≤ j ≤ 4), where Hj

constitutes the rows 8(j − 1) + 1 to 8j of H. Assume that H1 = H i0
8 . Choose any set of four

columns of H. If it is of type zero, then with respect to this set the rows are partitioned into a
set S of four blocks each consisting of eight rows (see (1) with b = 0). For each block B ∈ S the
invariant σ is computed and used to find an i such that B is Hadamard equivalent to H i

8. Note
that since σ is not a total invariant, we sometimes have more than one candidate for i. The
proper index i is identified by determining a permutation τ that converts B to H i

8. If i < i0,
then clearly H is not in the canonical form and we are done. If i > i0, then we have nothing to
say and so we ignore the block B. If i = i0, then we proceed to obtain the set P of permutations
converting B to H i

8 by composing τ with all retained automorphisms of H i
8. For each element of

P , we compare the remaining blocks of S with Hi (2 ≤ i ≤ 4) and if we find a permutation that
gives a larger matrix (which means that H is not in the canonical form), we stop the procedure.
Note that this last part is usually quite fast, since once we choose an element of P , by the fact
that the rows and columns of H are in decreasing order (Lemma 5(i)), there are not too many
candidate permutations to convert a block of S to H2 (and then another block to H3 and finally
the last block to H4). In fact most of the time, all that is needed for comparing a block of S

with Hi, i ≥ 2, is to sort the rows of that block of S after applying the column permutation.
The canonicity test is time consuming and thus is not feasible to be applied at each row. We
only apply the test when rows 9–12, 16, 24 and 32 are chosen. Of course, for the case H0

8 , we
are also required to apply the canonicity test at rows 17 to 20. The above method also works
for partial matrices with some minor modifications.

Table 2 indicates the number of Hadamard matrices corresponding to each H i
8. The approxi-

mate computation time, in CPU hours (scaled on a 2.4 GHz CPU), for each case is also provided.
We ran the program two times (with slight changes in the process of parallel executions at the
second run) and obtained the same results. Hence at least we can be assure that the probability
of hardware errors has been quite small. In passing, it is worth mentioning that our program
found the known 58 type zero Hadamard matrices of order 24 (see Table 1) in less than two
minutes on a single computer. We summarize the main result of this paper in the following
theorem.

Theorem 1 There are exactly 13, 680, 757 equivalence classes of type zero Hadamard matrices
of order 32.

The complete list of type zero Hadamard matrices of order 32 (also the transpose of type one
matrices; see the next section) is available electronically at [22] or [10]. The size of the zipped
file is about 220 megabytes. The matrices from the extension of any of the 31 cases described
above are also available in a smaller file. The matrices are retained in the hexadecimal format,
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i.e. the strings of four subsequent entries in each matrix are encoded with hexadecimal digits.
For example 0 and F represent −1 −1 −1 −1 and 1 1 1 1, respectively.

Table 2 Number of equivalence classes of type zero Hadamard matrices of order 32

i # of matrices Time (h) i # of matrices Time (h)

0 3,058,931 14815 16 204,796 260
1 2,916,470 325 17 83,888 115
2 1,598,742 850 18 0 0
3 1,075,714 45 19 21,577 55
4 1,087,616 110 20 2,918 15
5 8,091 3 21 119,295 110
6 236,662 80 22 43,737 60
7 1,158,803 180 23 365,410 800
8 1,189,261 245 24 33,167 250
9 37,425 20 25 69,344 790

10 47,062 35 26 1,117 31
11 1,457 3 27 17,104 500
12 43,744 70 28 5,941 480
13 1,709 10 29 44 40
14 24,910 40 30 29 67
15 225,793 260

Table 3 Number of equivalence classes of type one Hadamard matrices of order 32

i # of matrices i # of matrices i # of matrices

0 0 11 16 21 295
1 0 12 253 22 185
2 0 13 32 23 6,801
3 0 14 82 24 993
4 0 15 2,856 25 3,065
5 0 16 5,007 26 61
6 0 17 2,004 27 1,011
7 0 18 0 28 426
8 0 19 428 29 3
9 2,656 20 0 30 6

10 189
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5 Type one matrices

By Lemma 4, a classification of Hadamard matrices of type zero would yield a classification of
type one matrices. We checked type zero Hadamard matrices of order 32 that were found in the
previous section and it turned out that only for a small fraction the transpose is of type one.
The computation took only a few minutes on a single computer. Table 3 gives the number of
Hadamard matrices corresponding to each of H i

8 (0 ≤ i ≤ 30) which are of type one. The result
is summarized in the following theorem.

Theorem 2 There are exactly 26, 369 equivalence classes of type one Hadamard matrices of
order 32.
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