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Abstract

Let a graph Γ be locally disjoint union of three copies of complete graphs Kq−1 and let Γ

be cospectral with the Hamming graph H(3, q). Bang and Koolen [Asian-Eur. J. Math. 1

(2008), 147–156] proved that if q > 3, then Γ is isomorphic to H(3, q). We present a short

proof of this result.

AMS Mathematics Subject Classification (2000): 05C50, 05E30.

Keywords: Hamming graph, graph eigenvalue, distance-regular graph, local graph.

1 Introduction

The Hamming graphs H(d, q) (d, q > 2), the Cartesian product of d copies of the complete graph

Kq on q vertices, constitute an important family of distance-regular graphs. In [3], a question

was posed whether the Hamming graphs are uniquely determined by the adjacency spectrum. It

is known that H(3, 2) and H(2, q) (q 6= 4) are uniquely determined by the adjacency spectrum

and H(2, 4), H(3, 4), H(d, 2) (d > 4) and H(d, q) (d > q > 3) have cospectral mates (see [3] and

the references therein).

Let G and H be two graphs. The graph G is called locally H if for any vertex x of G, the

graph induced on the neighborhood of x is isomorphic to H. Obviously, H(d, q) is locally disjoint

union of d copies of Kq−1. In [2], it is shown that for q > 3, if a graph Γ is cospectral with

H(3, q) and locally disjoint union of three copies of Kq−1, then Γ is isomorphic to H(3, q). In

this note, we give a short proof of this theorem. We remark that in [1], using this result, H(3, q)

is shown to be uniquely determined by the adjacency spectrum for q > 36.

1Corresponding author.

1



2 The proof

We give a short proof of the following theorem from [2].

Theorem. Let Γ be a graph cospectral with H(3, q) for q > 3 and let Γ be locally disjoint union

of three copies of Kq−1. Then Γ is isomorphic to H(3, q).

Proof. For any vertex x of Γ , let Γi(x) denote the set of vertices in Γ at distance i from x.

By [4], a distance-regular graph cospectral with H(3, q) is H(3, q) if q 6= 4, and either H(3, 4)

or the Doob graph of the diameter 3, otherwise. Since the Doob graph of the diameter 3 is not

locally disjoint union of three copies of K3, it suffices to show that Γ is distance-regular. In

order to establish the distance-regularity of Γ , using [5, Lemma 1.2], we only need to prove that

|Γ2(x)| = 3(q − 1)2 for any vertex x of Γ .

For two vertices x and y of Γ at distance 2, let µ(x, y) denote the number of common neighbors

of x and y. Since Γ is locally disjoint union of three complete graphs, 1 6 µ(x, y) 6 3. For any

vertex x of Γ and any y ∈ Γ1(x), the vertex sets of two disjoint complete graphs induced on

Γ1(x) \ (Γ1(y) ∪ {y}) are denoted by ω1(x; y) and ω2(x; y). Since Γ is cospectral with H(3, q)

and H(3, q) is connected and regular, so is Γ . Recall that the distinct eigenvalues of H(3, q)

are 3q − 3, 2q − 3, q − 3,−3 (see [3]). Let A be the adjacency matrix of Γ . Using the Hoffman

polynomial [6], we have

A3 − 3(q − 3)A2 + (2q2 − 18q + 27)A + 3(2q − 3)(q − 3)I = 6J, (1)

where I and J are the identity and all one matrices, respectively. For any vertex x of Γ and any

z ∈ Γ2(x), by (1), we have

A3
(x,z) = 3(q − 3)µ(x, z) + 6, (2)

where A3
(x,z), the (x, z)-entry of A3, is equal to the number of walks of the length 3 from x to z

in Γ .

Fix a vertex x of Γ and let Ω = {ωi(y;x) | y ∈ Γ1(x) and i = 1, 2}. For any ω ∈ Ω and

1 6 i 6 3, let ai(ω) be the number of vertices z ∈ ω such that µ(x, z) = i. For 1 6 i 6 3, define

Si = {z ∈ Γ2(x) |µ(x, z) = i} and si = |Si|. By counting the number of edges between Γ1(x) and

Γ2(x) in two ways, we find that

s1 + 2s2 + 3s3 = 6(q − 1)2. (3)

Let c be the number of 4-cycles passing through x and some vertex of Γ2(x). It is not hard to

see that c is determined from the local structure of Γ and A4
(x,x) which the latter is computable

by (1). On the other hand, for every vertex α of H(3, q), the number of 4-cycles passing through

α and some vertex in distance 2 from α, is equal to 3(q − 1)2. Therefore, by the hypothesis of

theorem on Γ and using the relation c =
∑3

i=1

(

i
2

)

si, we obtain that

s2 + 3s3 = 3(q − 1)2. (4)
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Assume that Wi is the set of all walks of the length 3 from x to some vertex in Si. By

(2), |Wi| = 3i(q − 3) + 6. Using the local structure of Γ , the number of those elements of Wi

containing two vertices of Γ1(x) is i(q−2)si. Now, by considering those elements of Wi containing

two vertices of some ω ∈ Ω, we conclude that

2(q − 2)s2 +
∑

ω∈Ω

a2(ω)
(

a1(ω) + 2
(

a2(ω) − 1
)

+ 3a3(ω)
)

6 s2

(

6(q − 3) + 6
)

and

3(q − 2)s3 +
∑

ω∈Ω

a3(ω)
(

a1(ω) + 2a2(ω) + 3
(

a3(ω) − 1
)

)

= s3

(

9(q − 3) + 6
)

.

By a1(ω) + a2(ω) + a3(ω) = q − 1,
∑

ω∈Ω ai(ω) = isi and (4), we obtain that

∑

ω∈Ω

(

a2(ω) + 2a3(ω)
)2

=
∑

ω∈Ω

a2(ω)
(

a2(ω) + 2a3(ω)
)

+ 2
∑

ω∈Ω

a3(ω)
(

a2(ω) + 2a3(ω)
)

6 6(q − 1)3.

Therefore, by (4) and the Cauchy-Schwarz inequality, we have

6(q − 1)3 >
∑

ω∈Ω

(

a2(ω) + 2a3(ω)
)2

>

(

∑

ω∈Ω

a2(ω) + 2a3(ω)

)2

6(q − 1)
=

(2s2 + 6s3)
2

6(q − 1)
= 6(q − 1)3.

Since equality occurs in the above inequalities, it follows that a2(ω) + 2a3(ω) = q − 1 for every

ω ∈ Ω. Thus, if ω ∈ {ω1(y;x), ω2(y;x)} for some y ∈ Γ1(x), then the number of edges between ω

and ω1(x; y)∪ω2(x; y) is a1(ω)+2a2(ω)+3a3(ω)− (q−1) = q−1. This establishes the following

property of Γ :

(∗)
For every two adjacent vertices u and v of Γ , the number of edges

between ωi(u; v) and ω1(v;u) ∪ ω2(v;u) is equal to q − 1, where i = 1, 2.

Now we show that s1 = 0. By contrary, assume that z ∈ S1 and ω = ω1(y;x) is the unique

element of Ω containing z for some y ∈ Γ1(x). We know that the number of walks of the length

3 from x to z containing two vertices of Γ1(x) is q − 2 and the number of such walks passing

through two vertices of ω is a1(ω)−1+2a2(ω)+3a3(ω) = 2q−3. Furthermore, applying (∗) for y

and z, we find q−1 walks of the length 3 from x to z containing some vertex of ω1(z; y)∪ω2(z; y).

Hence, by (2), we obtain that (q − 2) + (2q − 3) + (q − 1) 6 A3
(x,z) = 3(q − 3) + 6. This yields

that q 6 3, a contradiction. Thus, s1 = 0 which in turn implies that s2 = 3(q − 1)2 and s3 = 0

by (3) and (4). This shows that |Γ2(x)| = 3(q − 1)2, as required. �

Remark. In [2], it is proven that a graph cospectral with H(3, 3) which is locally disjoint union

of three copies of K2, is either H(3, 3) or its dual. We can also show this assertion using the

property (∗).
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