Some indecomposable t-designs

G. B. Khosrovshahi and B. Tayfeh-Rezaie

G. B. Khosrovshahi

Department of Mathematics, University of Tehran, Tehran, Iran, Institute for studies in theoretical Physics and Mathematics (IPM) P.O. Box 19395-5746, Tehran, Iran, rezagbk@ipm.ir

B. Tayfeh-Rezaie

Institute for studies in theoretical Physics and Mathematics (IPM) P.O. Box 19395-5746, Tehran, Iran,

tayfeh-r@ipm.ir

Keywords t-designs, indecomposable designs, large sets of t-designs, disjoint designs

Abstract

The existence of large sets of 5-(14,6,3) designs is in doubt. There are five simple 5-(14,6,6) designs known in the literature. In this note, by the use of a computer program, we show that all of these designs are indecomposable and therefore they do not lead to large sets of 5-(14,6,3) designs. Moreover, they provide the first counterexamples for a conjecture on disjoint t-designs which states that if there exists a t- (v, k, λ) design (X, D) with minimum possible value of λ , then there must be a t- (v, k, λ) design (X, D') such that $D \cap D' = \emptyset$.

1 Introduction

Let t, k, v, and λ be integers such that $0 \leq t \leq k \leq v$ and $\lambda \geq 1$. A t- (v, k, λ) design (or briefly, t-design) is a pair $\mathcal{D} = (X, D)$ where X is a v-set and D is a collection of k-subsets of X such that every t-subset of X is exactly contained in λ elements of D. A simple counting argument shows that all the numbers $\lambda_i = \lambda {\binom{v-i}{t-i}} / {\binom{k-i}{t-i}}$ must be integers for $0 \leq i \leq t$. For given t, k, and v, the minimum value of λ satisfying these necessary conditions is denoted by λ_{min} . If the elements of D are distinct, then \mathcal{D} is called simple. Here we are concerned only with simple designs. Let $P_k(X)$ denote the set of all k-subsets of X. Then, it is easy to see $\mathcal{D}^s = (X, P_k(X) \setminus D)$ is also a t-design which is called the supplement design of \mathcal{D} . A t- (v, k, λ) design is called decomposable if it contains a t- (v, k, λ_1) design \mathcal{D}' with $\lambda_1 < \lambda$. Otherwise, it is indecomposable. A large set of t- (v, k, λ) designs of size N, denoted by $\mathrm{LS}[N](t, k, v)$, is a set of disjoint t- (v, k, λ) designs (X, D_i) , $1 \leq i \leq N$, such that D_i partition $P_k(X)$ and $N = {\binom{v-t}{k-t}}/\lambda$.

The family of 5-(14, 6, λ) designs seems to be an interesting case to be studied. Apart from the trivial case with $\lambda = 9$, the only possible values of λ are 3 and 6. Note that the set of designs with $\lambda = 6$ is exactly the set of supplements of designs with $\lambda = 3$. There are five 5-(14,6,3) designs known in the literature, one of which was found by A. E. Brouwer some 17 years ago [1] (which is denoted by \mathcal{D}_0 in this note) and the others were recently constructed by M. M-Noori and B. Tayfeh-Rezaie [4] (which are denoted by $\mathcal{D}_1 - \mathcal{D}_4$ following the notation of [4]). On the other hand, there are no known 6-(15,7,3) and 7-(16,8,3) designs. These designs are necessarily extensions of some 5-(14,6,3) designs and therefore the classification of 5-(14,6,3) designs is an interesting and important problem. We already know that the designs \mathcal{D}_i $(0 \leq i \leq 4)$ are not extendable. Also the existence of large sets of 5-(14,6,3) designs is in doubt and it seems to be a challenging problem for large set diggers. It is clear that the existence of large sets of 5-(14,6,3) designs is equivalent to the existence of decomposable 5-(14,6,6)designs. In this note, we show that the 5-(14,6,6) designs \mathcal{D}_i^s (0 $\leq i \leq$ 4) are indecomposable. Finally, note that these designs furnish the first counterexamples for a conjecture on disjoint t-designs which states that if there exists a t- (v, k, λ_{min}) design (X, D), then there must be a t- (v, k, λ_{min}) design (X, D') such that $D \cap D' = \emptyset$ [3]. Despite of these counterexamples, it seems that the conjecture is true for a wide range of parameter sets. By the permutation lemma [2], one can see that the conjecture is true for t- (v, k, λ_{min}) designs with $\lambda_{min}^2 {v \choose k} < {v-t \choose k-t}^2$. Some examples satisfying this condition are t(v, k, 1) designs with $k \geq 2t$, Steiner triple systems, and symmetric designs. We believe that the conjecture is true at least for 2designs.

2 Indecomposable 5-(14,6,6) designs

Given integers t, k, and v such that $0 \leq t \leq k \leq v$, the *inclusion matrix* $W_{tk}(v)$ is a (0,1) matrix whose rows are indexed by the *t*-subsets T and whose columns are indexed by the *k*-subsets K of a *v*-set X and $W_{tk}(v)(T, K) = 1$ if and only if $T \subseteq K$. We simply write W_{tk} instead of $W_{tk}(v)$ if there is no danger of confusion. It is clear that the existence of a t- (v, k, λ) design is equivalent to the existence of a (0, 1) column vector \mathbf{x} such that

$$W_{tk}\mathbf{x} = \lambda \mathbf{j},$$

where **j** is a column vector of all ones. Let $\mathcal{D} = (X, D)$ be a 5-(14,6,3) design. Then \mathcal{D}^s is a 5-(14,6,6) design. Denote by $A_{\mathcal{D}}$ the square matrix of order 2002 obtained from $W_{5,6}(14)$ by deleting all columns whose indices are in D. Obviously, \mathcal{D}^s is decomposable if and only if there exists a (-1, 1) column vector **a** such that $A_{\mathcal{D}}\mathbf{a} = 0$. So to prove that \mathcal{D}^s is indecomposable, we show that there is no vector with entries ± 1 in the null space of $A_{\mathcal{D}}$. To do this, we first need to determine a basis for the null space of $A_{\mathcal{D}}$. Because

of the large size of $A_{\mathcal{D}}$ it is much easier to work with finite fields versus the rational field. Note that each row of $A_{\mathcal{D}}$ has exactly 6 nonzero elements which are all ones and so the following lemma is trivial.

Lemma 2.1 Let p > 3 be a prime and let **a** be a (-1,1) column vector. $A_{\mathcal{D}}\mathbf{a} = 0$ holds on the rational field if and only if it holds on the finite field GF(p).

The rank of $W_{tk}(v)$ over the rational field is usually greater than its rank over finite fields (for rank formulas, see [5]). The same fact is expected to be true for $A_{\mathcal{D}}$. We now show that there is a suitable matrix whose rank is greater than the rank of $A_{\mathcal{D}}$ over any field. This is important because it helps us to deal with smaller search space. Consider the matrix $M_{tk}(v)$ defined as

$$M_{tk}(v) = \begin{bmatrix} W_{0k}(v) \\ W_{1k}(v) \\ \vdots \\ W_{tk}(v) \end{bmatrix},$$

and whose columns are indexed as the columns of $W_{tk}(v)$. Over any field, its rank is $\binom{v}{t}$ [5]. Instead of $A_{\mathcal{D}}$, we make use of the matrix $B_{\mathcal{D}}$ obtained from $M_{5,6}(14)$ by deleting all columns whose indices are in D. Since every t-design is also an i-design for $0 \leq i < t$, it is clear that the set of solutions of $A_{\mathcal{D}}\mathbf{x} = 0$ and $B_{\mathcal{D}}\mathbf{x} = 0$ over the rational field are identical. This fact together with Lemma 2.1 show that the set of (-1, 1) solutions of $A_{\mathcal{D}}\mathbf{x} = 0$ and $B_{\mathcal{D}}\mathbf{x} = 0$ over the finite field GF(p) are identical for any prime p > 3. The ranks of $A_{\mathcal{D}_i}$ and $B_{\mathcal{D}_i}$ $(0 \leq i \leq 4)$ over some finite fields are given in Table 1 for a comparison.

Table 1 The ranks of $A_{\mathcal{D}_i}$ and $B_{\mathcal{D}_i}$

	$A_{\mathcal{D}_0}$	$B_{\mathcal{D}_0}$	$A_{\mathcal{D}_1}$	$B_{\mathcal{D}_1}$	$A_{\mathcal{D}_2}$	$B_{\mathcal{D}_2}$	$A_{\mathcal{D}_3}$	$B_{\mathcal{D}_3}$	$A_{\mathcal{D}_4}$	$B_{\mathcal{D}_4}$
GF(2)	1287	1999	1287	1988	1287	1989	1287	1966	1287	1975
GF(3)	1728	1994	1728	1990	1728	1992	1728	1982	1728	1994
GF(5)	1989	2001	1978	1990	1980	1992	1980	1986	1983	1995
GF(7)	2001	2001	1990	1990	1990	1990	1982	1982	1993	1993
GF(11)	2001	2001	1990	1990	1986	1986	1983	1983	1995	1995

A basis for the null space of $B_{\mathcal{D}}$ over GF(p) is obtained in the following way. By a number of row operations and a permutation σ of columns and removing zero rows, $B_{\mathcal{D}}$ can be reduced to a standard form $B'_{\mathcal{D}} = [I \ C]$. The null space of $B'_{\mathcal{D}}$ is equal to the row space of $[-C^t \ I]$. Therefore, after applying the permutation σ^{-1} to the columns of $[-C^t \ I]$, the set of its rows provide a basis of the null space of $B_{\mathcal{D}}$. Once a basis is obtained, the null space can be searched for (-1, 1) vectors by taking (-1, 1) combinations of elements of the basis. For each of the designs \mathcal{D}_i $(0 \le i \le 4)$, this approach is applied over GF(5). A simple computer program is employed to find the bases and then to search the spaces for (-1, 1) vectors. Note that by Table 1, the ranks of null spaces are rather small and an exhaustive search is possible. The results show that there are no (-1, 1) vectors in the null spaces of $B_{\mathcal{D}_i}$. Therefore, all designs \mathcal{D}_i^s $(0 \le i \le 4)$ are indecomposable.

References

- [1] A. E. Brouwer, Table of t-designs without repeated blocks, $2 \le t \le k \le v/2, \lambda \le \lambda^+/2$, Math. Centrum. Report ZN76, Amsterdam, 1977; unpublished update, 1986.
- [2] B. Ganter, J. Pelikan, and L. Teirlinck, Small sprawling systems of equicardinal sets, Ars Combinatoria 4 (1977), 133–142.
- [3] A. S. Hedayat, G. B. Khosrovshahi, and D. Majumdar, A prospect for a general method of constructing t-designs, *Discrete Appl. Math.* 42 (1993), 31–50.
- [4] M. Mohammad-Noori and B. Tayfeh-Rezaie, Backtracking algorithm for finding t-designs, *J. Combin. Des.*, to appear.
- [5] R. M. Wilson, A diagonal form for the incidence matrices of t-subsets vs. k-subsets, European J. Combin. 11 (1990), 609–615.