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Abstract

In this paper, we employ the known recursive construction methods to obtain some new
existence results for large sets of t-designs of prime sizes. We also present a new recursive
construction which leads to more comprehensive theorems on large sets of sizes two and
three. As an application, we show that for infinitely many values of block size, the trivial
necessary conditions for the existence of large sets of 2-designs of size three are sufficient.
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1 Introduction

Let t, k, v, and λ be integers such that 0 ≤ t ≤ k ≤ v and λ ≥ 1. Let X be a v-set and Pk(X)
denote the set of all k-subsets of X. A t-(v, k, λ) design (briefly a t-design) on X is a collection
D of the elements of Pk(X) such that every t-subset of X is contained in exactly λ elements of
D. We always implicitly assume that 0 ≤ t < k < v to avoid trivial cases. If D has no repeated
block, it is called a simple design. Here we are concerned only with simple designs. A large set
of t-(v, k, λ) designs of size N on X, denoted by LS[N ](t, k, v), is a partition of Pk(X) into N

disjoint t-(v, k, λ) designs, where N =
(
v−t
k−t

)
/λ. We always assume that N > 1. It is well known

that a set of trivial necessary conditions for the existence of a LS[N ](t, k, v) is that(
v − i

k − i

)
≡ 0 (mod N), (1)

for 0 ≤ i ≤ t. Every quadruple (t, k, v;N) satisfying (1) is called a feasible set of parameters.
1This research was in part supported by a grant from IPM (No. 83050312).

1



In this note, we use the known recursive methods to obtain new existence results for large
sets of t-designs of prime sizes. A new recursive construction is also given for these large sets.
We then focus on large sets of sizes two and three. It is conjectured that in these cases a
large set exists for every feasible set of parameters [4, 6]. We demonstrate the correctness of
the conjectures for infinitely many values of k by assuming the existence of a few number of
large sets. As a consequence, we show that if 2.3n−1 + 3n−4 ≤ k < 3n for any n ≥ 4, then a
LS[3](2, k, v) exists for any feasible value of v.

2 Recursive constructions

We first recall the following well known theorems for a later usage.

Theorem 1 If there exists a LS[N ](t, k, v), then there exists a LS[N ](t, v − k, v).

Theorem 2 [3, 7] If there exists a LS[N ](t, k, v), then there exists a LS[N ](t− i, k − j, v − l)
for 0 ≤ j ≤ l ≤ i ≤ t.

Theorem 3 [5, 7] If there exists a LS[N ](t, k+i, v) for 0 ≤ i ≤ l, then there exists a LS[N ](t, k+
i, v + j) for 0 ≤ j ≤ i ≤ l.

Most of the recursive methods for construction of large sets are obtained through the notion
of (N, t)-partitionable sets which is in fact a generalization of the notion of large sets. Let X be
a v-set. We say that B ⊆ Pk(X) is (N, t)-partitionable if there exists a partition {Bi}N

i=1 of B
such that for any t-subset T of X, the occurrence of T in Bi is the same for all 1 ≤ i ≤ N . Note
that a LS[N ](t, k, v) exists if and only Pk(X) is an (N, t)-partitionable set. Let X1 and X2 be
two disjoint sets and let Bi ⊆ Pki

(Xi) for i = 1, 2. Then we define

B1 ∗ B2 = {B1 ∪B2| B1 ∈ B1, B2 ∈ B2}.

Lemma 1 [5] The union of disjoint (N, t)-partitionable sets is again an (N, t)-partitionable
set.

Lemma 2 [5] Let X1 and X2 be two disjoint sets and let Bi ⊆ Pki
(Xi) for i = 1, 2. Suppose

that B1 is (N, t1)-partitionable. Then

(i) B1 ∗ B2 is (N, t1)-partitionable.

(ii) If B2 is also (N, t2)-partitionable, then B1 ∗ B2 is (N, t1 + t2 + 1)-partitionable.
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A few powerful recursive constructions are obtained by the use of Lemmas 1 and 2. The
key idea is that we try to partition Pk(X) in such a suitable way that enables us to show that
each part of the partition is (N, t)-partitionable by Lemma 2. Then obviously, we find a large
set by Lemma 1. An example of this approach is given in the proof of Theorem 8. We review
the recursive constructions obtained by this approach for large sets of arbitrary sizes in the
following theorems. Then we will focus on large sets of prime sizes for which more powerful and
comprehensive results are obtained.

Notation. Let N, t, and k be given. The set of all v for which LS[N ](t, k, v) exist is denoted by
A[N ](t, k). The set of all v which satisfy the necessary conditions (1) is denoted by B[N ](t, k).
Let m and n be positive integers. We denote the quotient and remainder of division m by n by
[m/n] and (m/n), respectively.

Theorem 4 [2] Let a, b, c, d, t, s, k, v1, and v2 be nonnegative integers such that t ≤ s < k ≤
min{v1, v2} and s = k−1−a−b = t+c+d. Let v1 ∈ ∩k

i=k−aA[N ](t, i), v2 ∈ ∩k
i=k−bA[N ](t, i), v1−

l ∈ A[N ](t, k − a − l) for 1 ≤ l ≤ c, and v2 − l ∈ A[N ](t, k − b − l) for 1 ≤ l ≤ d. Then
v1 + v2 − s ∈ A[N ](t, k).

Corollary 1 [5] If a LS[N ](t, i, v) exists for t+1 ≤ i ≤ k and a LS[N ](t, k, u) also exists, then
a LS[N ](t, k, u + l(v − t)) exists for all l ≥ 1.

Corollary 2 [2] If a LS[N ](t, i, v + i) exists for t + 1 ≤ i ≤ k and a LS[N ](t, k, u) also exists,
then a LS[N ](t, k, u + l(v + 1)) exists for all l ≥ 1.

Corollary 3 [5] If a LS[N ](t, t+1, v+ t) exists, then a LS[N ](t, t+1, lv+ t) exists for all l ≥ 1.

For large sets of prime sizes there are stronger results which we present in the following
theorems. Note that for this special category of large sets we have a nice interpretation of
feasible parameter sets by Theorem 5. In what follows, we assume that t, k, v and p are given
and p is prime.

Theorem 5 [7] v ∈ B[pα](t, k) if and only if there exist distinct positive integers `i for 1 ≤ i ≤ α

such that t ≤ (v/p`i) < (k/p`i).

Theorem 6 [3, 8] If a LS[p](t, k, v − 1) exists, then a LS[p](t, pk + i, pv + j) exists for −p ≤
j < i ≤ p− 1.
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Theorem 7 [3] If a LS[p](t, k, v − 1) exists, then a LS[p](t + 1, pk + i, pv + j) exists for
0 ≤ j < i ≤ p− 1.

Theorem 8 Let f be a positive integer such that k > pf and t ≤ (v/pf ) < (k/pf ). For every
u < v, suppose that the following holds:

(i) If t ≤ (u/pf ) < pf − 1, then u ∈ A[p](t, pf − 1),

(ii) If t ≤ (u/pf ) < (k/pf ), then u ∈ A[p](t, k − pf ).

Then v ∈ A[p](t, k).

Proof Let X = {1, . . . , v} and let Xj = {1, . . . , j} and Yj = X \Xj for j = 1, . . . , v. Assume
that

Bh = Ppf−1(Xh) ∗ {{h + 1}} ∗ Pk−pf (Yh+1), pf − 1 ≤ h < v − k + pf .

It is not hard to see that the sets Bh partition Pk(X). By Lemma 1, it suffices to show that
each Bh is (N, t)-partitionable.

First suppose that (h/pf ) = pf − 1. Then ((v− 1− h)/pf ) = (v/pf ) and hence Pk−pf (Yh+1)
is (p, t)-partitionable by the assumption which in turn we conclude that Bh is (p, t)-partitionable
by Lemma 2. If t ≤ (h/pf ) < pf − 1, then Ppf−1(Xh) is (p, t)-partitionable by the assumption
and so is Bh by Lemma 2. Now let (h/pf ) = r < t. Then Ppf−1(Xh+t−r) is (p, t)-partitionable
by the assumption. It yields that Ppf−1(Xh) is (p, r)-partitionable by Theorem 2. We also have
((v− h + r)/pf ) = (v/pf ). Therefore, Pk−pf (Yh−r) is (p, t)-partitionable by the assumption. By
Theorem 2, we obtain that Pk−pf (Yh+1) is (p, t− r − 1)-partitionable. Therefore, by Lemma 2,
Bh is a (p, t)-partitionable set. �

The following theorem was proved in [7]. Here we present a simpler proof using Corollary 1
and Theorem 8.

Theorem 9 [7] Let f be a positive integer such that (k/pf ) > t. Suppose that pf + t ∈ A[p](t, i)
for t + 1 ≤ i ≤ min(k, (pf + t)/2). If t ≤ (v/pf ) < (k/pf ), then v ∈ A[p](t, k).

Proof By an induction argument on i we show that if t + 1 ≤ i ≤ k and (i/pf ) > t, then
v ∈ A[p](t, i) for all v such that t ≤ (v/pf ) < (i/pf ). If (pf + t)/2 < i < pf , then pf + t − i <

(pf + t)/2 and so pf + t ∈ A[p](t, pf + t− i) by the assumption. Hence, by Theorem 1, we have
pf + t ∈ A[p](t, i). By Corollary 1 we obtain that lpf + t ∈ A[p](t, i) for t < i < pf and l ≥ 1.
Now Theorems 3 and 5 show that the assertion is true for t < i < pf .
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Now let pf ≤ i ≤ k, (i/pf ) > t, and t ≤ (v/pf ) < (i/pf ). Then ((i − pf )/pf ) > t and by
the induction hypothesis for every u such that t ≤ (u/pf ) < (i/pf ), we have u ∈ A[p](t, i− pf ).
Therefore, Theorem 8 shows that v ∈ A[p](t, k). �

The theorems above have been utilized to show that some special classes of large sets (which
we call root cases after [7]) can be used to produce all possible large sets. The following theorems
identify these root cases.

Theorem 10 [1, 7] Let 2s − 1 ≤ t < 2s+1 − 1. Suppose that for every j and n such that
0 ≤ j ≤ [t/2] and t+1 ≤ 2n + j ≤ k, there exists a LS[2](t, 2n + j, 2n+1 + t). Then A[2](t1, k1) =
B[2](t1, k1) for all 2s − 1 ≤ t1 ≤ t and k1 ≤ k.

Theorem 11 [7] Let p be an odd prime and let ps−1 ≤ t < ps+1−1. Suppose that the following
conditions hold:

(i) There exists a LS[p](t, k′, ps+1 + t) for every t + 1 ≤ k′ ≤ min(k, (ps+1 + t)/2),

(ii) There exists a LS[p](t, ipn + j, pn+1 + t) for every i, j, and n such that 0 ≤ j ≤ t, 1 ≤ i ≤
(p− 1)/2, ipn + j ≤ k, and n > s.

Then A[p](t1, k1) = B[p](t1, k1) for all ps − 1 ≤ t1 ≤ t and k1 ≤ k.

3 Large sets of prime sizes

In this section we use the previously known results to obtain new theorems on large sets of prime
sizes. We note that the following results are in fact generalizations of similar theorems for large
sets of size two in [2].

Theorem 12 Let t < pf−1 and suppose that pf +t ∈ A[p](t, i) for t+1 ≤ i ≤ min(k, (pf +t)/2).
If tph−f ≤ (v/ph) < (k/ph) for any h ≥ f , then v ∈ A[p](t, k).

Proof The proof is by induction on h. If h = f , then we are done by Theorem 9. Therefore,
assume that h > f and tph−f ≤ (v/ph) < (k/ph). Let k = r0p

h+r1p+r2 and v = s0p
h+s1p+s2,

where tph−f ≤ s1p + s2 < r1p + r2 < ph and 0 ≤ s2, r2 < p. Clearly, tph−1−f ≤ s1 ≤ r1 < ph−1.
Now we define

(v′, k′) =


(s0p

h−1 + s1, r0p
h−1 + r1) if s1 < r1,

(s0p
h−1 + s1, r0p

h−1 + r1 + 1) if s1 = r1 < ph−1 − 1,

(s0p
h−1 + s1 − 1, r0p

h−1 + r1) if s1 = r1 = ph−1 − 1.
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Then tph−1−f ≤ (v′/ph−1) < (k′/ph−1) and by the induction hypothesis we have v′ ∈ A[p](t, k′).
Now Theorem 6 shows that v ∈ A[p](t, k). �

Theorem 13 Let t ≤ pf−1/2 and suppose that pf + t ∈ A[p](t, i) for t + 1 ≤ i ≤ min(k, (pf +
t)/2). Let pn−1 ≤ k < pn (n ≥ f). Then the following holds:

(i) If v ∈ A[p](t, k), then v + pn ∈ A[p](t, k),

(ii) If t ≤ (v/pn) < k and v > 2pn, then v ∈ A[p](t, k).

Proof By Theorem 12, pn + i− 1 ∈ A[p](t, i) for t + 1 ≤ i ≤ k. Therefore, by Corollary 2, the
assertion (i) holds. We use an induction argument on n to prove (ii). By (i) and Theorem 12,
it suffices to show that 2pn + j ∈ A[p](t, k) for t ≤ j < tpn−f . We make use of Theorem 4 to
prove it. Let a = k − pn−1, b = pn−1 − 1 + t − 2tpn−f , c = d = tpn−f − t, and s = 2tpn−f − t.
Then s = k − 1 − a − b = c + d + t. Also let v1 = pn + tpn−f and v2 = pn + tpn−f + j − t,
where t ≤ j < tpn−f . Since t ≤ pf−1/2, we have b ≥ 0. By (i) and the induction hypothesis,
we have v1 ∈ ∩k

i=pn−1A[p](t, i), v1 − l ∈ A[p](t, pn−1 − l) for 1 ≤ l ≤ c, v2 ∈ ∩k
i=k−bA[p](t, i), and

v2− l ∈ A[p](t, k−b− l) for 1 ≤ l ≤ d. Therefore, by Theorem 4, v1+v2−s = 2pn +j ∈ A[p](t, k)
for t ≤ j < tpn−f . �

4 Large sets of sizes two and three

In the previous section we presented new results on the existence of large sets of prime sizes. We
now show that more comprehensive results can be obtained for large sets of sizes two and three.
It is conjectured that the necessary conditions (1) are sufficient for the existence of large sets of
sizes two and three. The following theorems indicate that if those conjectures are true for some
small values of k, then they will be true for infinitely many values of k. We also provide two
applications of our results.

Theorem 14 Let t ≤ 2f−2 and suppose that A[2](t, i) = B[2](t, i) for t < i < 2f . Let 2n−1 ≤
k < 2n (n > f). Then

(i) B[2](t, k) \A[2](t, k) ⊂ {2n + j | t ≤ j < t2n−f},

(ii) If 2n−1 + t2n−f ≤ k < 2n, then A[2](t, k) = B[2](t, k).

Proof The proof in by induction on n. Assume that v ∈ B[2](t, k) and v 6= 2n + j, t ≤ j <

t2n−f . Let w = (v/2n). If w < k, then by Theorems 12 and 13, v ∈ A[2](t, k). So let k ≤ w < 2n.
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By Theorem 13, it suffices to show that w ∈ A[2](t, k), or by Theorem 1, w ∈ A[2](t, w − k).
If w − k < 2n−2, then we are done by the induction hypothesis. If 2n−2 ≤ w − k < 2n−1, then
w ≥ 2n−1 + 2n−2 ≥ 2n−1 + t2n−1−f . Therefore, w ∈ A[2](t, w − k) by induction.

Now let 2n−1 + t2n−f ≤ k < 2n and v = 2n + j, t ≤ j < t2n−f . Then v − k < 2n +
t2n−f − 2n−1 − t2n−f = 2n−1. Hence, by induction v ∈ A[2](t, v − k) which in turn yields that
v ∈ A[2](t, k). �

Theorem 15 Let t ≤ 3f−2 and suppose that A[3](t, i) = B[3](t, i) for t < i < 3f . Let 3n−1 ≤
k < 3n (n > f). Then

(i) B[3](t, k) \A[3](t, k) ⊂ {3n + j | t ≤ j < t3n−f},

(ii) If 2.3n−1 + t3n−f ≤ k < 3n, then A[3](t, k) = B[3](t, k).

Proof The proof is mostly similar to that of Theorem 14. We use an induction argument
on k. Assume that v ∈ B[3](t, k) and v 6= 3n + j, t ≤ j < t3n−f . Let w = (v/3n). If
w < k, then by Theorems 12 and 13, v ∈ A[3](t, k). So let k ≤ w < 3n. By Theorem 13, it
suffices to show that w ∈ A[3](t, k), or by Theorem 1, w ∈ A[3](t, w − k). If w − k < 3n−2 or
3n−1 ≤ w− k < k, then we are done by the induction hypothesis. If 3n−2 ≤ w− k < 3n−1, then
w ≥ 3n−1 + 3n−2 ≥ 3n−1 + t3n−1−f . Therefore, w ∈ A[3](t, w − k) by induction. Now suppose
that w − k > k. Then we have w = 2.3n−1 + i and k = 3n−1 + j, where 0 ≤ j < i < 3n−1. By
Theorem 5, there is h < n − 1 such that t ≤ (w/3h) < (k/3h). Such an h is not necessarily
unique and we can assume that (k/3h) ≥ 3h−1. We now have 2.3n−2 + t3n−1−f ≤ k − 3h < k.
Therefore, by the induction hypothesis and Theorem 8, it yields that w ∈ A[3](t, k).

Now let 2.3n−1 + t3n−f ≤ k < 3n and v = 3n + j, t ≤ j < t3n−f . Then v − k < 3n +
t3n−f − 2.3n−1 − t3n−f = 3n−1. Hence, by induction v ∈ A[3](t, v − k) which concludes that
v ∈ A[3](t, k). �

Theorem 16 [2] If 2n−1 + 3.2n−4 ≤ k < 2n for any n, then A[2](3, k) = B[2](3, k).

Proof We know that A[2](3, i) = B[2](3, i) for i < 16 [2] and so the assertion holds by Theorem
14. �

Theorem 17 If 2.3n−1 + 2.3n−4 ≤ k < 3n for any n, then A[3](2, k) = B[3](2, k).

Proof In [7], it was shown that A[3](2, i) = B[3](2, i) for i < 81. Therefore, the assertion
follows from Theorem 15. �
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