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Abstract

A graph is called integral if all eigenvalues of its adjacency matrix consist entirely of integers.
We prove that for a given nullity more than 1, there are only finitely many integral trees.
Integral trees with nullity at most 1 were already characterized by Watanabe and Brouwer.
It is shown that integral trees with nullity 2 and 3 are unique.
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1 Introduction

Throughout this article, all graphs are assumed to be finite and without loops or multiple
edges. For a graph G, we denote the vertex set and the edge set of G by V (G) and E(G),
respectively. The order of G is defined as |V (G)|. The adjacency matrix of G, denoted by A(G),
is a matrix whose entries indexed by V (G)×V (G) and the (u, v)-entry is 1 if u and v are adjacent
and 0 otherwise. The characteristic polynomial of G, denoted by ϕ(G;x), is the characteristic
polynomial of A(G). We will drop the indeterminate x for the simplicity of notation. The zeros
of ϕ(G) are called the eigenvalues of G. Note that A(G) is a real symmetric matrix so that
all eigenvalues of G are real numbers. We denote the eigenvalues of G in non-increasing order
as λ1(G) > · · · > λn(G), where n is the order of G. The graph G is said to be integral if all
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eigenvalues of G are integers. The nullity of G is defined as the nullity of A(G), which is equal
to the multiplicity of 0 as an eigenvalue of G. A large number of articles on nullity of graphs
have been published. We refer the reader to see [9] and references therein for a survey on this
topic.

The notion of integral graphs was first introduced in [10]. A lot of articles deal with integral
graphs. We refer the reader to [1] for a comprehensive but rather old survey on the subject.
Here, we are concerned with integral trees. These objects are extremely rare and hence very
difficult to find. For a long time, it was an open question whether there exist integral trees
with arbitrarily large diameter [12]. Recently, this question was affirmatively answered in [4, 8],
where the authors constructed integral trees for any diameter. It is well known that the tree on
two vertices is the only integral tree with nullity zero [13]. Thereafter, Brouwer proved that any
integral tree with nullity 1 is a subdivision of a star graph where the order of the star graph
is a perfect square [2]. The latter result has motivated us to investigate integral trees from the
‘nullity’ point of view.

In this article, we prove that with a fixed nullity more than 1, there are only finitely many
integral trees. We also characterize integral trees with nullity 2 and 3 showing that there is a
unique integral tree with nullity 2 as well as a unique integral tree with nullity 3.

2 Reduced trees

In this section we introduce ‘reduced trees’ and derive some properties of their spectrum. We
shall use these properties in the next section to prove our finiteness result.

As usual, the degree of a vertex v of a graph G is the number of edges of G incident on v.
A vertex of degree 1 is called pendant and a vertex adjacent to a pendant vertex is said to be
quasi-pendant. Write Pn for the path graph of order n. For a vertex v of a graph G, we say
that there are k pendant P2 at v if removing v from G increases the number of P2 components
by k. A graph G is called reduced if there exists at most one pendant P2 at each vertex of G.

We denote the multiplicity of λ as an eigenvalue of a graph G by mult(G;λ). We also denote
the number of eigenvalues of G in the interval (−1, 1) by m(G). It is worth to mention that
the eigenvalue spectrum of any bipartite graph is symmetric with respect to the origin [3, p. 6].
The following folklore fact, which is stated in [6, p. 49] as an exercise, shows that a reduced
graph obtained from a graph G by removing some pendant P2 has the same nullity as G.

Lemma 1. Let G be a graph and v ∈ V (G) be a pendant vertex. If u is the neighbor of v, then

the nullities of G and G− {u, v} are the same.

The following result is immediately deduced from Lemma 1 and is proved in [7, Theorem 2].
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Corollary 2. The size of the maximum matching in a tree of order n with nullity h is n−h
2 .

The first and second statements of the following theorem are respectively obtained from the
Cauchy interlacing theorem for symmetric matrices [3, Corollary 2.5.2] and the Perron–Frobenius
theory of nonnegative matrices [3, Theorem 2.2.1].

Theorem 3. If G is a graph of order n and H is an induced subgraph of G of order m, then

λn−m+i(G) 6 λi(H) 6 λi(G) for i = 1, . . . ,m. Moreover, if G is a connected graph and G 6= H,

then λ1(H) < λ1(G).

As a consequence of Theorem 3, one readily deduces that λ1(G) > λ2(G) for any connected
graph G of order at least 2.

Lemma 4. Let G be a graph and v ∈ V (G) be a pendant vertex. If u is the neighbor of v, then

m(G− {u, v}) 6 m(G).

Proof. Note that m(G − {u, v}) = m(G − u) − 1. Applying Theorem 3 for G and G − u, we
see that m(G− u)− 1 6 m(G), implying the result. 2

The following lemma generalizes a result in [13].

Lemma 5. The tree P2 is the only tree with no eigenvalue in (−1, 1).

Proof. We have m(P1) = 1. By induction on n, we will show for any tree T of order n > 3 that
m(T ) > 1. Let v be a pendant vertex in a tree T and v′ be its neighbor. If Tv = T −{v, v′} has a
connected component other than P2, then it follows from Lemma 4, m(P1) = 1, and the induction
hypothesis that m(T ) > m(Tv) > 1, as desired. Otherwise, all the connected components of Tv

must be P2. Indeed, we may assume that this property holds for each pendant vertex v of T .
This forces that T = P4. But m(P4) = 2 by [5, Table 2], completing the proof. 2

Theorem 6. For any nonnegative integer k, there are finitely many reduced trees with exactly

k eigenvalues in (−1, 1).

Proof. We prove the assertion by induction on k. By Lemma 5, we may assume that k > 1.
Let T be a reduced tree with m(T ) = k. First suppose that there exists v ∈ V (T ) such
that three of the connected components T1, . . . , Td of T − v are not P2. From Theorem 3,
m(T − v) 6 m(T ) + 1. Since T is reduced, at most one of T1, . . . , Td is P2. Hence, Lemma 5
yields that d− 1 6

∑d
i=1 m(Ti) 6 k + 1 and m(Ti) + 2 6

∑d
i=1 m(Ti) 6 k + 1 for i = 1, . . . , d. It

follows that d 6 k + 2 and m(Ti) 6 k − 1 for i = 1, . . . , d. Note that if some Ti is not reduced,
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then it has exactly one vertex with more than one pendant P2 and such a vertex has exactly two
pendant P2. By the induction hypothesis, the number of reduced trees F with m(F ) 6 k − 1 is
finite and thus there are only finitely many ways of choosing T1, . . . , Td. Since d 6 k + 2, the
result follows. Now suppose otherwise. This means that any vertex of T is of degree at most 3
and all vertices of degree 3 of T have a pendant P2. Hence, T is obtained from a path graph
Pt by attaching one pendant P2 at some vertices of degree 2 in Pt. Moreover, it follows from
Lemma 4 that m(Pt) 6 m(T ). We know from [3, p. 9] that λi(Pt) = 2 cos π`

t+1 for ` = 1, . . . , t.
Therefore, m(Pt) > t−2

3 and so t 6 3k + 2. This completes the proof. 2

For later use, we need the following refinement of Lemma 4.

Lemma 7. Let T be a tree with at least one pendant P2 at v ∈ V (T ). Then increasing the

number of pendant P2 at v by one, leaves the number of eigenvalues in (−1, 1) unchanged and

increases the multiplicity of 1 by one.

Proof. Suppose that T ′ is the resulting tree from T by adding two new vertices a and b where a

is joined to both b and v. Let c and d be the vertices of a pendant P2 of T at v. Let k = mult(T ; 1)
and assume that {x1, . . . , xk} is a basis for the eigenspace E of T corresponding to eigenvalue 1
when k > 1. Since each vector x ∈ E takes the same value on c and d, we conclude that x vanishes
on v. For each i with 1 6 i 6 k, extend xi to find the vector yi defined on V (T ′) with value 0 on
{a, b}. Also, define the vector yk+1 so that yk+1(a) = yk+1(b) = 1, yk+1(c) = yk+1(d) = −1, and
0 elsewhere. It is now readily verified that y1, . . . , yk+1 are linearly independent eigenvectors
of T ′ corresponding to eigenvalue 1. By Theorem 3, mult(T ′; 1) − 1 6 mult(T ′ − a; 1) = k.
Hence, mult(T ′; 1) = k + 1, as desired. Furthermore, from mult(T ′; 1) = mult(T ′ − a; 1) + 1 and
by applying Theorem 3 for T ′ and T ′ − a, one concludes that m(T ′ − a) = m(T ′) + 1. Since
m(T ′ − a) = m(T ) + 1, we deduce that m(T ) = m(T ′). This completes the proof. 2

3 Finiteness of integral trees with a given nullity

In this section we present our main result which states that for every integer h > 2, there are
finitely many integral trees with nullity h.

Definition 8. By considering a tree T as a connected bipartite graph, one finds a unique pair
{A,B} for which A and B are disjoint independent subsets of T with V (T ) = A∪B and B 6= ∅.
Define S(T ;A) to be the tree obtained from T by attaching a pendant vertex to each vertex in
B.

Definition 9. Let T be a tree. For every distinct vertices v1, . . . , vk ∈ V (T ) and nonnegative
integers s1, . . . , sk, we denote by T (v1, . . . , vk; s1, . . . , sk) the resulting tree from T by attaching
si pendant P2 at vi for i = 1, . . . , k.
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Definition 10. Let p, q, and r be nonnegative integers and let T1, T2, T3, and T4 be the trees
depicted in Figure 1 with some specified vertices. We will denote by S(p), S(p, q), S(p, q, r), and
S′(p, q, r) the trees T1(u; p), T2(u, v; p, q), T3(u, v, w; p, q, r), and T4(u, v, w; p, q, r), respectively.

Figure 1. The trees of Definition 10.

Note that all trees introduced in Definition 10 are of the form described in Definition 8.
The following lemma is established in [3, Proposition 5.1.1(i)] for k = 1. The general case is
straightforwardly proved by induction on k as mentioned in [3, p. 90].

Lemma 11. Let T1 and T2 be two vertex disjoint trees with specified vertices v1 ∈ V (T1) and

v2 ∈ V (T2). For a positive integer k, assume that T is the tree obtained from T1 and k copies

of T2 by joining v1 to the k copies of v2. Then

ϕ(T ) = ϕ(T2)k−1
(
ϕ(T1)ϕ(T2)− kϕ(T1 − v1)ϕ(T2 − v2)

)
.

Using Lemma 11, one obtains that

ϕ
(
S(p)

)
= x(x2 − p− 1)(x2 − 1)p−1, (1)

for any nonnegative integer p. In the rest of the article, we will use frequently the next lemma
which is obtained from [4, Lemma 2.8].

Lemma 12. Let G be a bipartite graph with bipartition {X, Y } and with k positive eigenvalues.

Let G′ be the graph obtained from G by joining r new pendant vertices to each vertex of X for

some positive integer r. Then λ2
i (G

′) = λ2
i (G) + r for i = 1, . . . , k.

Remark 13. Let T be a tree of order n and k > 1. For every distinct vertices v1, . . . , vk ∈ V (T )
and nonnegative integers s1, . . . , sk with s1 > · · · > sk, the tree T ′ = T (v1, . . . , vk; s1, . . . , sk)
satisfies

λi

(
T ′) >

√
si + 1 + λn(T ), (2)

for i = 1, . . . , k. So, when all values s1, . . . , sk go to infinity, then the k largest eigenvalues of
T ′ tend to infinity. In order to obtain (2), let L be the subgraph of T ′ which is isomorphic to
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the vertex disjoint union of S(s1), . . . , S(sk) and E(L) ∩ E(T ) = ∅. If we denote the spanning
subgraphs of T ′ with the edge sets E(L) and E(T ) respectively by F1 and F2, then we may
write A(T ′) = A(F1) + A(F2) by a suitable labeling of the vertices. Now (2) follows from the
Courant–Weyl inequalities [3, Theorem 2.8.1(ii)] and (1).

Lemma 14. Let T be a tree, k, t be positive integers, and v1, . . . , vk be distinct vertices of T .

Suppose that there exists a polynomial f(x) such that for every integers s1, . . . , sk > t, the tree

T ′ = T (v1, . . . , vk; s1, . . . , sk) satisfies

ϕ(T ′) = (x2 − 1)s1+···+sk−kf(x)
k∏

i=1

(
x2 − αi(s1, . . . , sk)

)
, (3)

where αi(s1, . . . , sk), . . . , αk(s1, . . . , sk) are positive-valued functions in terms of s1, . . . , sk. Then

T = S(R; {v1, . . . , vk}) for some tree R.

Proof. We prove the assertion by induction on k. First assume that k = 1. For convenience in
notation, let v = v1, s = s1, and α = α1. We have ϕ(T ′) = (x2−1)s−1((x2−1)ϕ(T )−sxϕ(T−v))
by Lemma 11. Hence, we deduce from (3) that (x2 − 1)ϕ(T ) − sxϕ(T − v) = f(x)(x2 − α(s))
for any integer s > t. In particular,

(x2 − 1)ϕ(T )− txϕ(T − v) = f(x)
(
x2 − α(t)

)
(4)

and
(x2 − 1)ϕ(T )− (t + 1)xϕ(T − v) = f(x)

(
x2 − α(t + 1)

)
. (5)

Using (4) and (5), one obtains that f(x) = xϕ(T − v)/(α(t + 1) − α(t)). It is clear from (3)
that f(x) is a monic polynomial, implying α(t + 1)−α(t) = 1. Therefore, f(x) = xϕ(T − v). It
follows from (4) that

(x2 − 1)ϕ(T ) = x(x2 − µ)ϕ(T − v), (6)

for some real number µ. Hence, mult(T ; 0) = mult(T − v; 0)+ 1 and so it follows from Lemma 1
that v is not a quasi-pendant vertex in T . Consequently, T contains a copy of S(r) as an induced
subgraph with the central vertex v, where r is the degree of v. We know that the sum of squares
of all eigenvalues of a graph equals twice the number of edges of the graph [3, Proposition 1.3.1].
Applying this fact to T and T − v, we obtain from (6) that

r = E(T )− E(T − v) = 1
2

|V (T )|∑
i=1

λ2
i (T )−

|V (T )|−1∑
i=1

λ2
i (T − v)

 = µ− 1. (7)

Further, it follows from (6) and Theorem 3 that λ1(T ) = µ. Also, we find from (1) and (7) that
λ1(S(r)) = µ and therefore, λ1(T ) = λ1(S(r)). Since T contains a copy of S(r) as a subgraph,
Theorem 3 yields that T = S(r), as desired.

6



Now assume that k > 2. Let T ′′ = T (v1, . . . , vk−1; s1, . . . , sk−1). By Lemma 11, we have

ϕ(T ′) = (x2 − 1)sk−1
(
(x2 − 1)ϕ(T ′′)− skxϕ(T ′′ − vk)

)
. (8)

Combining (3) with (8) and setting ρ = s1 + · · ·+ sk−1 − k + 1, we conclude that

(x2 − 1)ϕ(T ′′)− skxϕ(T ′′ − vk) = (x2 − 1)ρf(x)
k∏

i=1

(
x2 − αi(s1, . . . , sk)

)
,

for every integers s1, . . . , sk > t. In particular, we have

(x2 − 1)ϕ(T ′′)− txϕ(T ′′ − vk) = (x2 − 1)ρf(x)
k∏

i=1

(
x2 − αi(s1, . . . , sk−1, t)

)
(9)

and

(x2 − 1)ϕ(T ′′)− (t + 1)xϕ(T ′′ − vk) = (x2 − 1)ρf(x)
k∏

i=1

(
x2 − αi(s1, . . . , sk−1, t + 1)

)
, (10)

for every integers s1, . . . , sk−1 > t. It is easily obtained from (9) and (2) that

xϕ(T ′′ − vk) = (x2 − 1)ρf(x)
k−1∏
i=1

(
x2 − βi(s1, . . . , sk−1)

)
, (11)

where βi(s1, . . . , sk−1), . . ., βk−1(s1, . . . , sk−1) are positive-valued function in terms of s1, . . . , sk−1.
It follows from Remark 13 that k − 1 of the roots of ϕ(T ′′ − vk) tend to infinity as s1, . . . , sk−1

grow and hence
∏k−1

i=1 (x2 − βi(s1, . . . , sk−1)) is not divisible by x for some integers s1, . . . , sk−1.
So, we find from (11) that

f(x) = xg(x), (12)

for some polynomial g(x), and thus we can rewrite (11) as

ϕ(T ′′ − vk) = (x2 − 1)ρg(x)
k−1∏
i=1

(
x2 − βi(s1, . . . , sk−1)

)
. (13)

Let W = {v1, . . . , vk}. By (13), Lemma 7, and the induction hypothesis, we deduce that
each connected component H of T − vk with V (H) ∩ W 6= ∅ is of the form S(R;V (H) ∩ W ).
By replacing vk with any of v1, . . . , vk−1 in the above argument, we find that this property also
holds for T − v1, . . . , T − vk−1. From this, we conclude that each connected component H of
T − vk with V (H) ∩ W = ∅ must be P2, since if not, then for an index i 6= k the connected
component H of T − vi containing vk does not have the form S(R;V (H)∩W ), a contradiction.

Denote by L1 = S(F1;A1), . . . , L` = S(F`;A`) the connected components of T − vk which
are not P2. We claim that the neighbor of vk in V (Li) is contained in V (Fi)\Ai for i = 1, . . . , `.
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This evidently shows that T is of the form S(R;W ). Aiming for a contradiction, suppose for
some i that the neighbor of vk in V (Li) either is contained in Ai or is a pendant vertex in Li.
This implies that there exists vp ∈ Ai of distance 1 or 3 from vk. If k = 2, then ` = 1 and T is
isomorphic to one of the trees depicted in Figure 2.

Figure 2.

From (3) and (12), we deduce that T ′ has eigenvalue 0 and so Corollary 2 yields that T ′ and
T have no perfect matching. But both trees in Figure 2 have perfect matchings, so we get a
contradiction. If k > 3, then for an index q /∈ {k, p} the connected component H of T − vq

containing vk does not have the form S(R;V (H)∩W ), since vk and vp have odd distance in H.
This contradiction establishes the claim and completes the proof. 2

The following lemma is a special case of [6, Theorem 8.1.7].

Lemma 15. Let e be an edge of a tree T . Let T ′ be the tree obtained from T by contracting e

to a vertex u and attaching a pendant vertex to u. Then λ1(T ′) > λ1(T ).

Lemma 16. Let T be a tree of order n and v ∈ V (T ) be of the degree k. For any nonnegative

integer m, define Tv(m) as the tree obtained from T by attaching m pendant vertices to v. Then

λ2
1(Tv(m)) < m + k + 1 if m > (k + 1)(n− k − 2).

Proof. By applying the operation described in Lemma 15 iteratively on all the edges of Tv(m)
not incident with v, we reach at a tree T ′

v(m) depicted in Figure 3.

Figure 3. The tree T ′
v(m).
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It follows from Lemma 15 and Theorem 3 that λ1(Tv(m)) 6 λ1(T ′
v(m)) 6 λ1(T ′′

v (m)), where
T ′′

v (m) is the tree obtained for T ′
v(m) by increasing the number of pendant vertices attached to

each of u1, . . . , uk to t, where t = max{t1, . . . , tk}. The characteristic polynomial of T ′′
v (m) can

be computed by applying Lemma 11. So, an easy calculation shows that

λ2
1

(
T ′′

v (m)
)

=
m + k + t +

√
(m + k + t)2 − 4mt

2
.

Hence, λ2
1(Tv(m)) < m + k + 1 if m > (k + 1)(t− 1). Since n > k + t + 1, the result follows. 2

Now we are in a position to present our main result.

Theorem 17. For every integer h > 2, there are finitely many integral trees with nullity h.

Proof. Arguing toward a contradiction, suppose that there are infinitely many integral trees
with nullity h for some h > 2. Therefore, by Lemma 7 and Theorem 6, we find a reduced tree
T with V (T ) = {v1, . . . , vn} and nullity h such that T (v1, . . . , vn; si1, . . . , sin) is integral for an
infinite set {(si1, . . . , sin)}i∈N of n-tuples of nonnegative integers. If for some fixed integers j

and s, the set {i | sij = s} is infinite, then we replace T by T (vj ; s). Repeating this operation,
we may assume that there is a tree T of order n with specified vertices v1, . . . , vk and an infinite
set {(si1, . . . , sik)}i∈N of k-tuples of nonnegative integers such that sij < s(i+1)j for j = 1, . . . , k,
and Ti = T (v1, . . . , vk; si1, . . . , sik) is integral for all i.

By Remark 13, the set {λj(Ti) | i ∈ N} is not bounded for j = 1, . . . , k, and by Theorem 3,
the set {λk+1(Ti) | i ∈ N} is bounded above by max{1, λ1(T −{v1, . . . , vk})}. This clearly implies
that there exists an integer i0 such that λj(Ti) is fixed for j = k+1, . . . , k+ n−h

2 and each i > i0.
Furthermore, by Lemma 7, we have λj(Ti) = 1 for j = k + n−h

2 +1, . . . , si1 + · · ·+ sik + n−h
2 and

all i > i0. By Theorem 3, it is not hard to see that T ′ = T (v1, . . . , vk; s1, . . . , sk) satisfies in (3)
for all integers s1, . . . , sk > t, where t = max{si01, . . . , si0k}. Therefore, it follows from Lemma
14 that T = S(R; {v1, . . . , vk}) for some tree R.

We proceed to obtain a contradiction by showing that for large enough i, λ1(Ti) is not
an integer. For a fixed i, we may relabel v1, . . . , vk such that si1 > · · · > sik. Define the
tree Ei as follows: start with the tree R, attach si1 pendant vertices to each of v1, . . . , vk,
and then in the resulting tree attach a pendant vertex to each vertex outside of {v1, . . . , vk}.
Obviously, Ti is a subgraph of Ei and so, using Lemma 12 twice and by Theorem 3, we find that
λ2

1(Ti) 6 1+si1 +λ2
1(R). Since Ti contains vertex disjoint copies of S(si1) and S(si2), Theorem 3

and (1) imply that λ2
2(Ti) > λ2

1(S(si2)) = 1+si2. It follows that λ2
1(Ti)−λ2

2(Ti)−λ2
1(R) 6 si1−si2.

Since λ2
1(Ti)−λ2

2(Ti) is the difference of two distinct perfect squares, λ2
1(Ti)−λ2

2(Ti) and so si1−si2

tend to infinity when i grows. Define the tree Fi as follows: start with the tree Rv1(si1 − si2)
in the sense which is defined in Lemma 16, attach si2 pendant vertices to each of v1, . . . , vk,
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and then in the resulting tree attach a pendant vertex to each vertex outside of {v1, . . . , vk}.
Evidently, Ti is a subgraph of Fi and so, using Lemma 12 twice and by Theorem 3, we find that

λ2
1(Ti) 6 1 + si2 + λ2

1

(
Rv1(si1 − si2)

)
. (14)

Applying Lemma 16 and assuming i is large enough, we obtain that

λ2
1

(
Rv1(si1 − si2)

)
< si1 − si2 + ` + 1, (15)

where ` is the degree of v1 in R. Clearly, it follows from h > 2 and Lemma 1 that k > 2. From
this and by Theorem 3 and (1), one deduces that

λ2
1(Ti) > λ2

1

(
S(si1 + `)

)
= si1 + ` + 1. (16)

It follows from (14)–(16) that si1 + ` + 1 < λ2
1(Ti) < si1 + ` + 2 for large enough i. This

contradiction completes the proof. 2

4 Integral trees with nullity 2 and 3

Integral trees with nullity 0 and 1 are respectively classified in [2] and [13]. In this section we
characterize integral trees with nullity 2 and 3. Before that, we determine all integral trees
among the trees introduced in Definition 10. From (1), we find that S(p) is integral if and only
if p + 1 is a perfect square.

Lemma 18. Let p and q be nonnegative integers. Then S(p, q) is not integral.

Proof. Towards a contradiction, suppose that T = S(p, q) is integral. We first assume that
p = q. Using Lemma 12 twice, we find that λ2

1(T ) = p + 3. Since T has two vertex disjoint
copies of S(p), we obtain from Theorem 3 and (1) that λ2

2(T ) > λ2
1(S(p)) = p + 1. Therefore,

λ2
1(T ) − λ2

2(T ) 6 2. This is a contradiction, since no two distinct non-zero perfect squares
have difference at most 2. We now assume without loss of generality that p > q. Again, using
Lemma 12 twice and by Theorem 3, we find that λ2

1(T ) < p + 3. Since T contains a copy of
S(p + 1) as a subgraph, Theorem 3 and (1) yield that λ2

1(T ) > λ2
1(S(p + 1)) = p + 2. Hence,

p + 2 < λ2
1(T ) < p + 3 which implies that λ1(T ) is not an integer, a contradiction. 2

Lemma 19. Let p, q, r be nonnegative integers and let T ∈ {S(p, q, r), S′(p, q, r)}. Then either

T = S(0, 0, 0) or T is not integral.

Proof. Assume that T is integral and let t and t′ be the largest and second largest number
among p, q, r, respectively. We know from [5, Table 2] that S(0, 0, 0) is integral while S′(0, 0, 0)
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is not integral. Hence, towards a contradiction, we suppose that t > 1. Since T contains a copy
of S(t + 1) as a subgraph, Theorem 3 and (1) imply that

λ2
1(T ) > λ2

1(S(t + 1)) = t + 2. (17)

Assume that R is one of the star graph of order 4 or P5. Using Lemma 12 twice and by Theorem
3, one obtains that λ2

1(T ) 6 1+t+λ2
1(R), where the equality occurs if and only if p = q = r. From

[2, pp. 8–9], we find that λ1(R) =
√

3 and so λ2
1(T ) 6 t + 4. In the case of equality, T has three

vertex disjoint copies of S(t) and thus Theorem 3 and (1) yield that λ2
2(T ) > λ2

1(S(t)) = t + 1
which in turn implies that λ2

1(T )−λ2
2(T ) 6 3. This is impossible, since λ1(T ) and λ2(T ) are two

distinct integers more than 1. Thus, in view of (17), one deduces that λ2
1(T ) = t + 3. We know

from [5, Table 2] that λ1(S(1, 0, 0)), λ1(S′(1, 0, 0)), and λ1(S′(0, 1, 0)) are greater than 2. This
implies that t > 2 and therefore λ2

1(T )− λ2
2(T ) > 5. On the other hand, T contains two vertex

disjoint copies of S(t′), so Theorem 3 and (1) yield that λ2
2(T ) > λ2

1(S(t′)) = t′ +1. This follows
that t− t′ > λ2

1(T )− λ2
2(T )− 2 > 3. Assume that R′ is one of the trees R′

1, R′
2, R′

3 depicted in
Figure 4.

Figure 4. The tree R′.

Define the tree T ′ as follows: start with the tree R′, attach t − 3 pendant vertices to each of
u, v, w, and then in the resulting tree attach a pendant vertex to each vertex outside of {u, v, w}.
Since t′ 6 t − 3, T is a subgraph of T ′ and so, by Theorem 3 and using Lemma 12 twice, one
deduces that t+3 = λ2

1(T ) 6 1+ t−3+λ2
1(R

′), implying λ1(R′) >
√

5. We know from [5, Table
2] that λ1(R′

1) and λ1(R′
2) are less than

√
5 and thus R′ = R′

3. Since T is obtained from T ′

by deleting some pendant P2 at u and w, T contains a copy of S(t + 2) as a subgraph. Hence,
Theorem 3 and (1) imply that λ2

1(T ) > λ2
1(S(t + 2)) = t + 3, a contradiction. 2

We are now ready to characterize integral trees with nullity 2 and 3. In order to do this
in a simple manner, we use the following interesting result which is called the Parter–Wiener
theorem [11, 14].

Theorem 20. If T is a tree and mult(T ;λ) > 2 for some λ, then there exists v ∈ V (T ) such

that mult(T − v;λ) = mult(T ;λ) + 1.

The integral trees with nullity 1 are characterized in [2, Theorem 3]. In the next theorem, we
will generalize this result by a short and simple proof. We start with the following easy lemma.

11



Lemma 21. Let T be a tree with no eigenvalue in (0, 1)∪ (1, 2). Then the order of T is at most

2 mult(T ; 0) + 3mult(T ; 1)− 1.

Proof. Since the spectrum of eigenvalues of T is symmetric around the origin [3, p. 6] and the
sum of squares of all eigenvalues of T equals twice the number of its edges [3, Proposition 1.3.1],
we obtain that

2 mult(T ; 1) + 4
(
n−mult(T ; 0)− 2 mult(T ; 1)

)
6 2(n− 1).

This follows the assertion. 2

Theorem 22. Let T be a tree with nullity 1 and no eigenvalue in (0, 1)∪ (1, 2). Then T = S(p)
for some p > 0.

Proof. If mult(T ; 1) 6 1, then Lemma 21 implies that T is of order at most 4. We know from
[5, Table 2] that, among the trees of order at most four, S(0) is the only tree satisfying the
assumption of the theorem. So, assume that mult(T ; 1) > 2. From Theorem 20, there exists a
vertex v such that mult(T −v; 1) = mult(T ; 1)+1. Hence, Theorem 3 implies that m(T −v) = 0.
It follows from Lemma 5 that T − v is a vertex disjoint union of some copies of P2, yielding the
result. 2

The following conclusion, which is first appeared in [2], should be clear from (1) and Theorem
22.

Corollary 23. Each integral tree with nullity 1 is of the form S(p2 − 1) for some p > 1.

Theorem 24. Let T be a tree with nullity 2 and no eigenvalue in (0, 1)∪ (1, 2). Then either T

is the tree depicted in Figure 5 or T = S(p, q) for some nonnegative integers p, q.

Proof. If mult(T ; 1) 6 1, then Lemma 21 yields that the order of T is at most 6. We know from
[5, Table 2] that, among the trees of order at most 6, the only tree satisfying the assumption
of the theorem is the tree depicted in Figure 5. So, assume that mult(T ; 1) > 2. By Theorem
20, there exists a vertex v such that mult(T − v; 1) = mult(T ; 1) + 1. Employing Theorem 3,
one concludes that T − v has nullity 1 and has no eigenvalue in (0, 1) ∪ (1, 2). Thus, in view of
Lemma 5 and Theorem 22, T − v is of the form S(p) ∪ qP2 for some nonnegative integers p, q.
If the neighbor of v in S(p) is not quasi-pendant, then T would have a perfect matching and so
Corollary 2 yields that the nullity of T would be 0, a contradiction. Hence, v is adjacent to a
quasi-pendant vertex in S(p). This means that p > 1 and T = S(p− 1, q), the result follows. 2

By combining Lemma 18 and Theorem 24, the following is obtained.
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Corollary 25. There is only one integral tree with nullity 2; namely, the tree depicted in Figure

5.

Figure 5. The unique integral tree with nullity 2.

Theorem 26. The star graph of order 5 is the only integral tree with nullity 3.

Proof. Let T be an integral tree with nullity 3. If mult(T ; 1) 6 1, then it follows from Lemma
21 that T has at most 8 vertices. We know from [5, Table 2] that, among the trees of order at
most 8, there is only one integral tree with nullity 3 that is the star graph of order 5, we are done.
Towards a contradiction, suppose that mult(T ; 1) > 2. From Theorem 20, there exists a vertex
v such that mult(T − v; 1) = mult(T ; 1) + 1. Moreover, by Theorem 3, T − v has nullity 2 and
has no eigenvalue in (0, 1) ∪ (1, 2). From Theorems 22 and 24, it follows for some nonnegative
integers p, q, r that T − v is of one of the following forms:

(i) S(p) ∪ S(q) ∪ rP2;

(ii) S(p, q) ∪ rP2;

(iii) Y ∪ rP2, where Y is the tree depicted in Figure 5.

If (i) is the case, then by Corollary 2, v is necessarily adjacent to two quasi-pendant vertices in
S(p) and S(q). This means that p, q > 1 and T = S′(p − 1, r, q − 1), which contradicts Lemma
19. In the case (ii), it follows from Corollary 2 that the neighbor of v in S(p, q) is quasi-pendant.
This implies that T ∈ {S(p, q, r), S′(r, p−1, q), S′(p, q−1, r)} and so by Lemma 19, we find that
T = S(0, 0, 0). This is a contradiction, since mult(T ; 1) > 2. For the case (iii), using Corollary
2, v is necessarily adjacent to one of the two vertices of degree 3 in Y . By applying Lemma 11,
we find that ϕ(T ) = x3(x2 − 1)r(x4 − (r + 6)x2 + 4r + 6). From the intermediate value theorem,
it is easily seen that ϕ(T ) has a zero in (1, 2), a contradiction. The proof is now complete. 2

We mention here that one can apply a similar method to find all integral trees with other
small nullities which of course would be an elaborate task. By [2], among trees up to fifty
vertices, there is no integral tree with nullities 4, 6, or 9. Therefore, one may ask if there exist
integral trees with nullity 4. Further, one may ask a more general question: Does there exist
arbitrarily large integer h such that there is no integral tree with nullity h? Eventually, we pose
the question: For given integers m, k > 1, is the number of integral trees with eigenvalue m of
multiplicity k finite?
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