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Abstract

The existence of a partial quadrangle PQ(s, t, µ) is equivalent to the existence of
a diamond-free strongly regular graph SRG(1+s(t+1)+s2t(t+1)/µ, s(t+1), s−1, µ).
Let S be a PQ(3, (n + 3)(n2 − 1)/3, n2 + n) such that for every two non-collinear
points p1 and p2, there is a point q non-collinear with p1, p2, and all points collinear
with both p1 and p2. In this article, we establish that S exists only for n ∈ {−2, 2, 3}
and probably n = 10.
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I. Introduction

A strongly regular graph with parameters (ν, k, λ, µ), denoted by SRG(ν, k, λ, µ), is a

regular graph of order ν and valency k such that (i) it is not complete or edgeless, (ii) every

two adjacent vertices have λ common neighbors, and (iii) every two non-adjacent vertices

have µ common neighbors. The concept of strongly regular graphs was first introduced by

Bose and Shimamoto in [4]. Strongly regular graphs form an important class of graphs and
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lie somewhere between highly structured graphs and apparently random graphs. They

often appear in different areas such as coding theory, design theory, discrete geometry,

group theory, and so on. Obviously, complete multipartite graphs with equal part sizes

and their complements are trivial examples of strongly regular graphs. To exclude these

examples, we assume that a strongly regular graph and its complement are connected; or

equivalently, 0 < µ < k < ν − 1.

The adjacency matrix of a graph G, denoted by AG, has its rows and columns indexed

by the vertex set of G and its (i, j)-entry is 1 if the vertices i and j are adjacent and 0

otherwise. The zeros of the characteristic polynomial of AG are called the eigenvalues of

G. The statement that G is an SRG(ν, k, λ, µ) is equivalent to

AGJν = kJν and A2
G + (µ− λ)AG + (µ− k)Iν = µJν ,

where It and Jt are the t× t identity matrix and the t× t all one matrix, respectively. It

is easy to verify that the eigenvalues of an SRG(ν, k, λ, µ) are

k, with the multiplicity 1;

r =
λ− µ+

√
∆

2
, with the multiplicity f =

ν − 1

2
− 2k + (ν − 1)(λ− µ)

2
√
∆

;

s =
λ− µ−

√
∆

2
, with the multiplicity g =

ν − 1

2
+

2k + (ν − 1)(λ− µ)

2
√
∆

,

where ∆ = (λ − µ)2 + 4(k − µ). It is well known that the second largest eigenvalue of

a graph G is non-positive if and only if the non-isolated vertices of G form a complete

multipartite graph. Also, it is a known fact that the smallest eigenvalue of a graph G

is at least −1 if and only if G is a disjoint union of some complete graphs. So, for any

SRG(ν, k, λ, µ), we necessarily have r > 0 and s < −1.

The diamond is the graph on four vertices with five edges. A graph with no diamond

as an induced subgraph is called diamond-free. It is straightforward to see that a graph

is diamond-free if and only if the neighborhood of any vertex is a disjoint union of some

complete graphs. Furthermore, an SRG(ν, k, λ, µ) is diamond-free if and only if λ + 1 | k
and the neighborhood of each vertex is k

λ+1
Kλ+1.

A partial quadrangle with parameters (s, t, µ), denoted by PQ(s, t, µ), is an incidence

structure (P ,L, I) in which P and L are disjoint non-empty sets of elements called points

and lines, respectively, and I ⊆ (P × L) ∪ (L × P) is a symmetric incidence relation

satisfying the following conditions:

(i) Each line is incident with s+ 1 points and each point is incident with t+ 1 lines.
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(ii) Every two distinct points are incident with at most one line.

(iii) For each non-incident pair (p, `) ∈ P ×L, there is at most one pair (p′, `′) ∈ P ×L
such that the both p, p′ are incident with `′ and p′ is incident with `.

(iv) For every two non-collinear points, there are exactly µ points collinear with both of

them.

Partial quadrangles were firstly introduced by Cameron in [5]. Clearly, for any PQ(s, t, µ),

we necessarily have µ 6 t + 1. In the literature, a PQ(s, t, t + 1) is called a generalized

quadrangle and is denoted by GQ(s, t). The collinearity graph of a PQ(s, t, µ) is the

graph whose vertices are the points and two vertices are adjacent if they are collinear. It

is straightforward to verify that the collinearity graph of a PQ(s, t, µ) is a diamond-free

SRG

(
1 + s(t+ 1) +

s2t(t+ 1)

µ
, s(t+ 1), s− 1, µ

)
.

Inversely, a diamond-free strongly regular graph is the collinearity graph of a partial

quadrangle whose points are vertices of the graph and lines are maximal cliques of the

graph. So, an SRG(ν, k, λ, µ) with λ 6 1 or µ = 1 is the collinearity graph of a partial

quadrangle.

Recently, Bondarenko and Radchenko showed in [3] that a PQ(2, (n3 +3n2−2)/2, n2 +

n), or equivalently, an SRG((n2 + 3n− 1)2, n2(n+ 3), 1, n(n+ 1)), exists if and only if n ∈
{1, 2, 4}. Let S be a PQ(3, (n+3)(n2− 1)/3, n2 +n) such that for every two non-collinear

points p1 and p2, there is a point q non-collinear with p1, p2, and all points collinear with

both p1 and p2. In this article, we will show that if S exists, then n ∈ {−2, 2, 3, 10}.
Equivalently, we will establish the following theorem.

Theorem 1. If there exists a diamond-free SRG((n2+3n−2)2, n(n2+3n−1), 2, n(n+1)),

for some integer n, satisfying the following condition:

For every two non-adjacent vertices u and v, there is a vertex that

is not adjacent to u, v, and all common neighbors of u and v,
(1)

then n ∈ {−2, 2, 3, 10}.

For n = −2, there are exactly two non-isomorphic SRG(16, 6, 2, 2); these are the lattice

graph L4, 4, that is the Cartesian product of two copies of K4, and the Shrikhande graph.

Only the first one is diamond-free. For details of these facts, see [6] and the references

therein. In case n = 2, it is demonstrated in [6] that there exist precisely 167 non-

isomorphic SRG(64, 18, 2, 6) and only one of them is diamond-free. For n = 3, we are
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aware of a diamond-free SRG(256, 51, 2, 12) which is found in [7]. The uniqueness of

such a graph seems to be unknown. Note that all these three diamond-free strongly

regular graphs satisfy (1). For n = 10, the question whether there exists a diamond-free

SRG(16384, 1290, 2, 110) is left as an open problem. Finally, we believe that Theorem 1

holds without assuming the condition (1).

II. Notation and Preliminaries

We first recall some notation from graph theory. For a graph G, the vertex set of G is

denoted by V (G). We employ the notation u ∼ v when two vertices u, v ∈ V (G) are

adjacent. For any vertices v1, . . . , vt ∈ V (G), we let

N(v1, . . . , vt) = {x ∈ V (G) |x ∼ vi, for i = 1, . . . , t}.

For every two subsets S and T of V (G), we denote by 〈S, T 〉 the induced subgraph of G

on all edges with one endpoint in S and the other endpoint in T . For simplicity, we will

use the notation N [v], N(v), and 〈S〉 instead of N(v) ∪ {v}, V (G) \ (N(v) ∪ {v}), and

〈S, S〉, respectively.

It is a simple and well known fact that a strongly regular graph whose valency is equal

to the multiplicity of a non-principal eigenvalue is either a conference graph, that is an

SRG(n, (n− 1)/2, (n− 5)/4, (n− 1)/4), or an

SRG((n2 + 3n− λ)2, n(n2 + 3n− λ+ 1), λ, n(n+ 1)), (2)

for some integer n; depending on f = g or not. Let G be a graph of the family given by

(2). The eigenvalues of G are n with the multiplicity ν − 1− k and λ− n2 − 2n with the

multiplicity k. Traditionally, if n > 0, then g = k and G is called a negative Latin square

graph and if n < 0, then f = k and G is called a pseudo Latin square graph. Note that

if n < 0, then λ − n2 − 2n > 0 and so n > −1 −
√

1 + λ. This means that, for a fixed

parameter λ, there are only finitely many strongly regular graphs with f = k. In this

article, we only deal with strongly regular graphs with f 6= g and g = k.

Let G be a diamond-free SRG(ν, k, λ, µ) in the family (2) with 0 6 λ 6 n − 1. Fix

a vertex u ∈ V (G) and assume that 〈N(u)〉 = sKλ+1, where s = k/(λ + 1). Letting

H = 〈N [u]〉, we may write

AG =

[
X Y

Y > AH

]
, (3)
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for some matrices X and Y . Since λ 6 n− 1, n is not an eigenvalue of H. With an easy

calculation, we find that

n(n+ 1)2(n− λ)(nIk+1 −AH)−1 =

[
(aIλ+1 + µJλ+1)⊗ Is bjk

bj>k c

]
− Jk+1, (4)

where a = µ(n−λ), b = λ+1−n, c = (λ+1−n)(n+1−λ), and jk is the all one column

vector of length k. For every two vertices v, w ∈ N(u), let pu(v, w) = |N(u, v, w)| and

qu(v, w) be the number of pairs x ∼ y with x ∈ N(u, v) and y ∈ N(u,w). Since g = k,

we have rank (nIν −AG) = rank (nIk+1 −AH), which implies by (3) that

nIν−k−1 −X = Y (nIk+1 −AH)−1Y >. (5)

Using (4) and (5), it is not hard to see that

(n− λ+ 1)pu(v, w) + qu(v, w) =

{
λ(n+ 1), if v ∼ w;

µ, otherwise,
(6)

for every two vertices v, w ∈ N(u).

Now, fix a vertex v ∈ N(u) and set t = bµ/(n−λ+1)c. For i = 0, 1, . . . , t, let Mi(u, v)

be the set of all vertices x 6∈ N [u]∪N [v] with pu(v, x) = i, and put mi(u, v) = |Mi(u, v)|.
By a double counting argument, it is straightforward to find that

t∑
i=0

mi(u, v) = ν − 2k + µ− 2;

t∑
i=0

imi(u, v) = µ(k − 2λ− 2);

t∑
i=0

(
i

2

)
mi(u, v) = (µ− 2)

(
µ

2

)
.

(7)

Notice that G satisfies (1) if and only if m0(u, v) 6= 0 for every two non-adjacent vertices

u, v ∈ V (G).

III. The Proof of Theorem 1

In this section, we give a proof of Theorem 1. Let G be a diamond-free SRG((n2 + 3n−
2)2, n(n2+3n−1), 2, n(n+1)), for some integer n > 3, satisfying (1). We will demonstrate

that either n = 3 or n = 10. In the following lemma, we solve the system (7) for each

pair u � v of vertices of G. For any vertex u ∈ V (G), we denote by Φ(u) the partition of

N(u) into cliques of size 3.
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Lemma 2. For every two non-adjacent vertices u, v ∈ V (G), the system (7) has the

unique solution 

m0(u, v) = 2;

m1(u, v) = · · · = mn−1(u, v) = 0;

mn(u, v) = n(n+ 2)(n2 − 1);

mn+1(u, v) = 2n(n2 − 4);

mn+2(u, v) = n(n+ 1).

(8)

Moreover, if M0(u, v) = {a, b}, for some vertices a, b ∈ V (G), then a � b, pu(a, b) = 0,

and any element of Φ(u) which meets N(v), also meets both N(a) and N(b).

Proof. Fix two non-adjacent vertices u, v ∈ V (G). Since G satisfies (1), there exists a

vertex a ∈M0(u, v). We first establish the following steps.

Step 1. 〈M0(u, v),Mn+2(u, v)〉 is complete bipartite.

By contrary, suppose that x ∈ M0(u, v) is not adjacent to y ∈ Mn+2(u, v). Since

qu(v, x) = µ, pu(v, y) = 2, and qu(v, y) = n+2, one can easily deduce that qu(x, y) > n+2

and pu(x, y)+qu(x, y) = n+4. Further, we have from (6) that (n−1)pu(x, y)+qu(x, y) = µ.

These two equalities yield that qu(x, y) = 2, a contradiction.

Step 2. 〈N(u, a), N(v, a)〉 is 1-regular.

Consider an arbitrary vertex x ∈ N(v, a). Since 〈N [v]〉 is a disjoint union of triangles,

pu(v, x) = 1 and so (6) implies that qu(v, x) = n+3. This shows that pu(a, x)+ qu(a, x) =

n+ 4. Again, (6) yields that pu(a, x) = 1, as required.

Step 3. mn+2(u, v) 6 µ.

Consider an arbitrary vertex x ∈Mn+2(u, v). Since qu(v, a) = µ, pu(v, x) = n+2, and

qu(v, x) = 2, we conclude that pu(a, x) + qu(a, x) = n + 4. By Step 1 and (6), we find

that pu(a, x) = 1 and similarly, pv(a, x) = 1. Let N(u, a, x) = {u′} and N(v, a, x) = {v′}.
Since G is diamond-free, u′ ∼ v′. It follows from Step 2 that mn+2(u, v) 6 µ, as desired.

Step 4. m0(u, v) 6 2 and the ‘Moreover’ statement holds.

For every two vertices x, y ∈ M0(u, v), we have pu(x, y) + qu(x, y) = µ and by (6),

(n − 1)pu(x, y) + qu(x, y) = ε(n + 1), where ε ∈ {2, n}. This yields that pu(x, y) = 0

and x � y. Since 〈N [u]〉 is a disjoint union of triangles, we must have m0(u, v) 6 2. If

M0(u, v) = {a, b}, then (6) forces that qu(v, a) = qu(v, b) = µ. This shows clearly that the

‘Moreover’ statement is valid.

Step 5. Let {u, v1, w1} be an independent set with pu(v1, w1) 6= 0. Then pu(v1, w1) > n.
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Let v2 ∈ M0(u, v1) and w2 ∈ M0(u,w1). Since pu(v1, w1) 6= 0, Step 4 shows that

v2 6= w2. Let t denote the number of elements in Φ(u) meeting both N(v1) and N(w1).

Using Step 4 and (6), we have

(n− 1)pu(vi, wj) +
(
t− pu(vi, wj)

)
= εij(n+ 1), for i, j ∈ {1, 2}, (9)

where εij = 2, if vi ∼ wj and εij = n, otherwise. Since n > 3 and pu(v1, w1) + pu(v1, w2) +

pu(v2, w1) + pu(v2, w2) = t, summing up the four formulae given in (9), we obtain that

t 6 4µ/(n+ 2). The equality (9) for i = j = 1 yields that pu(v1, w1) > µ/(n+ 2) > n− 1,

as we wanted to prove.

We are now prepared to solve the system (7) for G. Obviously, Step 5 means that

m1(u, v) = · · · = mn−1(u, v) = 0. Solving the system (7) in terms of mn(u, v), mn+1(u, v),

mn+2(u, v), we obtain that

mn(u, v) = (n+ 1)(n+ 2)(n2 − n+ 1)−
(
n+ 2

2

)
m0(u, v); (10)

mn+1(u, v) = 2n(n+ 2)(n− 3) + n(n+ 2)m0(u, v); (11)

mn+2(u, v) = 2n(n+ 1)−
(
n+ 1

2

)
m0(u, v). (12)


From (12) and using Steps 3 and 4, we deduce thatm0(u, v) = 2 andmn+2(u, v) = n(n+1).

Now, the solution (8) is clearly obtained from (10) and (11). �

Consider a vertex u ∈ V (G). Obviously, Lemma 2 shows that N(u) has a partition

Ψ(u) into independent sets of size 3 such that pu(x, y) = 0, for every two distinct vertices

x and y belonging to an element of Ψ(u). Notice that for every subsets φ ∈ Φ(u) and

ψ ∈ Ψ(u), 〈φ, ψ〉 is either edgeless or 1-regular. In the latter case, we say that φ and ψ

are matched together.

Lemma 3. Let u ∈ V (G) and let ψ, ψ′ be two distinct elements of Ψ(u). Then 〈ψ, ψ′〉 is

r-regular with r ∈ {0, 1, 2}. Moreover, for every two vertices v ∈ ψ and w ∈ ψ′,

pu(v, w) =

{
max{0, r − 1}, if v ∼ w;

n+ r, otherwise.

Proof. Let v ∈ ψ, ψ′ = {w1, w2, w3}, and t = pu(v, w1)+pu(v, w2)+pu(v, w3). By Lemma

2, t is independent of the choice of v in ψ and qu(v, wi) = t − pu(v, wi), for i = 1, 2, 3.

Applying (6), we find for each i that (n−2)pu(v, wi) = εi(n+1)−t, where εi = 2, if v ∼ wi
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and εi = n, otherwise. Summing up these three formulae, we obtain that ε1 + ε2 + ε3 = t.

It follows from n > 3 that the degrees of the elements in ψ as some vertices of 〈ψ, ψ′〉 are

the same. Clearly, a similar property holds for the elements of ψ′. This shows that 〈ψ, ψ′〉
is r-regular, for some r. By Lemma 2, m2(u, v) = 0 and so r ∈ {0, 1, 2}. The rest of the

proof is straightforward. �

Lemma 4. Let u ∈ V (G) and let ψ = {v1, v2, v3}, ψ′ = {w1, w2, w3} be two distinct

elements of Ψ(u) in which 〈ψ, ψ′〉 is 2-regular and vi � wi, for i = 1, 2, 3. Then for

any element {a1, a2, a3} ∈ Φ(u) matched to both ψ and ψ′, there is an permutation

π ∈ 〈(1 2 3)〉 such that ai ∼ vi and ai ∼ wπ(i), for i = 1, 2, 3.

Proof. By the contrary and with no loss of generality, suppose that there is an element

{a1, a2, a3} ∈ Φ(u) with a1 ∈ N(v1, w1), a2 ∈ N(v2, w3), and a3 ∈ N(v3, w2). Since

the neighborhood of each vertex of G is a disjoint union of triangles, there is a vertex

x ∈ N(a2, v2, w3). Since {a2, w3, x} ∈ Φ(v2), {u, v1, v3} ∈ Ψ(v2), a2 ∼ u, and w3 ∼ v1, we

deduce that x ∼ v3. Also, since {a2, v2, x} ∈ Φ(w3), {u,w1, w2} ∈ Ψ(w3), a2 ∼ u, and v2 ∼
w1, we conclude that x ∼ w2. Thus 〈{a3, v3, w2, x}〉 contains a diamond as a subgraph,

which forces that x ∼ a3. However, this is impossible, since {u, a1, x} ⊆ N(a2, a3). �

Lemma 5. Let u ∈ V (G) and let φ, φ′ be two distinct elements of Φ(u). Then there

is a suitable labeling φ = {a1, a2, a3} and φ′ = {b1, b2, b3} such that for any element

{v1, v2, v3} ∈ Ψ(u) matched to both φ and φ′, the relations ai ∼ vi and bi ∼ vπ(i) hold, for

any i ∈ {1, 2, 3} and some permutation π ∈ 〈(1 2 3)〉.

Proof. Let Rij` = {{v1, v2, v3} ∈ Ψ(u) | v1 ∈ N(a1, bi), v2 ∈ N(a2, bj), v3 ∈ N(a3, b`)}, for

every i, j, ` with {i, j, `} = {1, 2, 3}. Since each pair ai � bj has µ− 1 common neighbors

except u, it is easily seen that |R123| = |R231| = |R312| and |R132| = |R321| = |R213| =

µ−1−|R123|. Let S = R123∪R231∪R312 and T = R132∪R321∪R213. The assertion of the

lemma is equivalent to that either S = ∅ or T = ∅. By contrary, suppose that both S and

T are not empty. We show that the degree of each vertex of 〈S〉 is at least 2n. With no

loss of generality, consider x ∈ S ∩N(a1, b1). It is easily checked by Lemmas 3 and 4 that

〈S, T 〉 is edgeless. Since b2 ∼ b3, at least one set in each of pairs {N(x, a2, b2), N(x, a2, b3)}
and {N(x, a3, b2), N(x, a3, b3)} is not empty. On the other hand, it follows from (8) that

either px(ai, bj) = 0 or px(ai, bj) > n, for every indices i, j ∈ {2, 3}. This clearly means

that the degree of x as a vertex of 〈S〉 is at least 2n, as desired. Obviously, the similar

property holds for 〈T 〉. So, the second largest eigenvalue of 〈S, T 〉 = 〈S〉 ∪ 〈T 〉 would be
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at least 2n. This is a contradiction by the interlacing theorem, since the second largest

eigenvalue of G is r = n. �

We now proceed to define a permutation σu on V (G) of order 3 and then demonstrate

that σu is in fact an automorphism of G. Put σu(u) = u. Fix an element ζ = {z1, z2, z3}
of Φ(u) and define σu(z1) = z2, σu(z2) = z3, and σu(z3) = z1. We repeatedly do the

following process until σu is defined on the whole V (G):

Assume that {a1, a2, a3} ∈ Φ(u) and {v1, v2, v3} ∈ Ψ(u) form a matched pair

with ai ∼ vi, for i = 1, 2, 3. If σu is already defined on only one of the two

triples, then we define σu on the other one such that σu induces the same

permutation on indices of elements of the two triples.

Note that we may first define σu on the all elements of Ψ(u) matched with ζ and then we

can proceed to define σu on each element of Φ(u), since µ > 1. Finally, σu is defined on

each element of Ψ(u). We show that σu is a well defined permutation. For this, it suffices

to demonstrate that

(i) if σu is defined on two elements ψ = {v1, v2, v3} and ψ′ = {w1, w2, w3} in Ψ(u) and

φ = {a1, a2, a3} ∈ Φ(u) is matched to ψ and ψ′, then the definitions of σu forced by

ψ and ψ′ on φ are the same;

(ii) if σu is defined on two elements φ = {a1, a2, a3} and φ′ = {b1, b2, b3} of Φ(u) and

ψ = {v1, v2, v3} ∈ Ψ(u) is matched to φ and φ′, then the definitions of σu forced by

φ and φ′ on ψ are the same.

The assertions (i) and (ii) are direct consequences of Lemmas 4 and 5, respectively. For (i),

note that we may assume that ζ is matched to ψ and ψ′. For (ii), note that z1 ∈Mi(a1, b1),

for some i > 1, and so there is a vertex w ∈ N(z1, a1, b1). This shows that there is an

element in Ψ(u) containing w which matches to ζ, ψ, and ψ′.

The above discussion implies that σu is well defined. Also, from the definition of σu,

we easily see that the subgraphs 〈N [u]〉 and 〈N [u], N(u)〉 are fixed by σu. Therefore,

applying (5), 〈N(u)〉 is fixed by σu and hence σu is an automorphism of G.

As we saw in the above, for each vertex u ∈ V (G), we can associate to u two auto-

morphisms of G of order 3, that are the inverse of each other. Fix a vertex z ∈ V (G) and

also fix σz to be one of the two automorphisms associated to z. Now, for any arbitrary

vertex u ∈ V (G), let σu be that automorphism associated to u satisfying σu(z) = σ−1
z (u).

Lemma 6. For every two vertices u, v ∈ V (G), σu(v) = σ−1
v (u).
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Proof. In order to prove the lemma, we need to establish a more general result. For any

vertex u ∈ V (G), fix uτu to be one of the two automorphisms which perviously defined

at u. Also, for each other vertex v ∈ V (G), let uτv be that automorphism defined at v

satisfying uτv(u) = uτ−1
u (v). Consequently, we have uτ−1

v (u) = uτu(v), for every vertices

u, v ∈ V (G). We claim that aτb(c) = aτ−1
c (b), for every vertices a, b, c ∈ V (G). This

clearly implies the assertion of the lemma, if we consider z instead of a. We will just

prove the claim when a, b, c are mutually distinct, since otherwise the claim follows from

the definition. We consider the following seven cases.

Case 1. a ∼ b, a ∼ c, b ∼ c.

In this case, the claim is easily checked from the definition.

Case 2. a ∼ b, a ∼ c, b � c.

Let {b, u, u′}, {c, v, v′} ∈ Φ(a) and M0(b, c) = {w,w′}. From N(b, c, w) = N(b, c, w′) =

∅, we find that a � w and a � w′. Also, from a 6∈ M0(w,w
′) = {b, c}, one concludes

that M0(a, w) and M0(a, w
′) are disjoint. Let M0(a, w) = {x, x′} and M0(a, w

′) = {y, y′}.
Since {a, u, u′} ∈ Φ(b), {c, w, w′} ∈ Ψ(b), and a ∼ c, we may, with no loss of generality,

assume that u ∼ w and u′ ∼ w′. Similarly, let v ∼ w and v′ ∼ w′. Without loss of

generality, assume that aτa(b) = u and b ∼ x. Then aτb(a) = aτ−1
a (b) = u′, which yields

that aτb(c) = w′. Consider two elements {a, x, x′}, {b, c, w′} ∈ Ψ(w). Since a ∈ N(b, c),

Lemma 3 yields that 〈{a, x, x′}, {b, c, w′}〉 is 2-regular and so we conclude from b ∼ x that

c ∼ x′. Therefore, x ∼ v′. Since aτa(b) has cycle (b u u′), it also has cycles (xw x′) and

(v′ v c). Hence aτa(c) = v′, which in turn implies that aτ−1
c (a) = aτa(c) = v′. So aτc has

cycle (v′ a v) and so it also has cycle (w′ bw). Thus aτ−1
c (b) = w′, as desired.

Case 3. a ∼ b, a � c, b ∼ c.

By the definition, either bτa = aτa or bτa = aτ−1
a . We only consider the first equality.

The argument is similar, if the second equality occurs. We have aτb(a) = aτ−1
a (b) =

bτ−1
a (b) = bτb(a). Since aτb and bτb are coincide on {a, b}, we conclude from the definition

that aτb = bτb. Also, Case 2 implies that bτc(a) = bτ−1
a (c) = aτ−1

a (c) = aτc(a), which yields

that bτc = aτc. Therefore, aτb(c) = bτb(c) = bτ−1
c (b) = aτ−1

c (b), as required.

Case 4. N(a, b, c) 6= ∅.

Consider a vertex x ∈ N(a, b, c). We assume that xτa = aτa. The argument is similar

when xτa = aτ−1
a . Using Cases 1 and 2, we can write xτb(a) = xτ−1

a (b) = aτ−1
a (b) = aτb(a).

Hence xτb = aτb, and similarly, xτc = aτc. Therefore, by Cases 1 and 2, we find that
aτb(c) = xτb(c) = xτ−1

c (b) = aτ−1
c (b), as we wanted to prove.

Case 5. a � b, a � c, b � c.
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If a ∈M0(b, c), then the claim is easily checked from the definition. So, let a 6∈M0(b, c),

which means that there exists a vertex x ∈ N(a, b, c). Now we are done by Case 4.

Case 6. a � b, a � c, b ∼ c.

It suffices by Case 4 to assume that N(a, b, c) = ∅. Let y, y′ ∈ N(a, b) and z ∈
N(b, y′). Since a � b, we have y � y′. We assume that aτy = yτy. The argument is

similar when aτy = yτ−1
y . By Case 3, we obtain that aτb(y) = aτ−1

y (b) = yτ−1
y (b) =

yτb(y), which yields that aτb = yτb. Since 〈N(b)〉 and 〈N(y′)〉 are disjoint unions of

triangles, z 6∈ N(a) ∪ N(c) ∪ N(y). It follows from y′ ∈ N(a, b, z) and Cases 3 and

4 that yτz(b) = yτ−1
b (z) = aτ−1

b (z) = aτz(b) and thus yτz = aτz. Moreover, it follows

from b ∈ N(c, y, z) and Cases 4 and 5 that yτc(z) = yτ−1
z (c) = aτ−1

z (c) = aτc(z) and

hence yτc = aτc. Since N(a, b, c) = ∅, we have c � y, which together Case 3 imply that
aτb(c) = yτb(c) = yτ−1

c (b) = aτ−1
c (b), as desired.

Case 7. a ∼ b, a � c, b � c.

We assume that cτa = aτa. The argument for the case cτa = aτ−1
a is similar. We

have aτc(a) = aτ−1
a (c) = cτ−1

a (c) = cτc(a), which implies that aτc = cτc. Using Case 6,
cτb(a) = cτ−1

a (b) = aτ−1
a (b) = aτb(a) and so cτb = aτb. Now, we find that aτb(c) = cτb(c) =

cτ−1
c (b) = aτ−1

c (b), as required.

The proof of the claim is now completed and so the assertion of the lemma follows. �

In order to continue, we need the following result.

Theorem 7. [1, Theorem3.2] If π is a non-trivial automorphism of an SRG(ν, k, λ, µ)

with the second largest eigenvalue r, then the number of fixed points of π is at most

ν

k − r
max(λ, µ).

Corollary 8. Each non-trivial automorphism of G has at most ν/4 fixed points.

Lemma 9. For every two vertices u1, u2 ∈ V (G), (σu1σ
−1
u2

)2 is equal to the identity.

Proof. For four distinct vertices a, b, c, d ∈ V (G), we call the set {a, b, c, d} to be related

if either it is a clique or it is an independent set with M0(a, b) = {c, d}. Note that every

two distinct vertices of G is contained in a unique related set. Let U = {u1, u2, u3, u4}
be a related set and let ρij = σui

σ−1
uj

, for every i, j ∈ {1, 2, 3, 4}. Consider a vertex

x ∈ V (G) \ U . By Lemma 6, we find that σ−1

σ−1
ui

(x)
(U) = {ρ1i(x), ρ2i(x), ρ3i(x), ρ4i(x)} and
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σuj
σx(U) = {ρj1(x), ρj2(x), ρj3(x), ρj4(x)} are related, for every i, j ∈ {1, 2, 3, 4}. Since

every two distinct vertices of G is contained in a unique related set, it is easily seen that

σ−1

σ−1
ui

(x)
(U) = σuj

σx(U), for every indices i 6= j. It follows that the eight sets which we

associated to x in the above are the same. Denote the common set by Hx. Note that if

y ∈ Hx, then Hx = Hy. Therefore, P = {Hx |x ∈ V (G) \ U} is clearly a partition of

V (G) \ U into related sets.

Working towards a contradiction, suppose that ρ12 6= ρ21. Consider an arbitrary

element Hx ∈ P. Since ρ2
12 is a permutation on Hx, |Hx| = 4, and ρ12(x) 6= x, we

obviously deduce that either ρ2
12 has no fixed point in Hx or ρ2

12 is the identity on Hx.

Thus, Corollary 8 shows that ρ2
12 has no fixed point in at least 3

16
ν − 1 elements of P.

Assume that ρ2
12 fixes no element of Hx = {x, ρ12(x), ρ13(x), ρ14(x)}. So ρ12(x) 6=

ρ21(x). We claim that one of ρ12ρ13 or ρ12ρ14 is the identity on Hx. Note that by Lemma

6, ρij(x) 6= ρij′(x) and ρij(x) 6= ρi′j(x) whenever i 6= i′ and j 6= j′. We clearly have

ρ21(x) ∈ {ρ13(x), ρ14(x)}. Suppose that ρ21(x) = ρ13(x). Since the eight sets which we

associated to x in the first paragraph of the proof are equal, one concludes that the

elements of Hx \ {x} are 
ρ12(x) = ρ24(x) = ρ31(x),

ρ13(x) = ρ21(x) = ρ34(x),

ρ14(x) = ρ23(x) = ρ32(x).

It is then easy to check that ρ12ρ13 is the identity on Hx. With a similar argument, one

deduces that if ρ21(x) = ρ14(x), then ρ12ρ14 is the identity on Hx. This establishes the

claim.

Note that none of ρ12ρ13 and ρ12ρ14 are trivial. For instance, if ρ12ρ13(u1) = u1, then

σ−1
u2
σu1σ

−1
u3

(u1) = u1 and so by Lemma 6, we find that σu2(u1) = σu1σ
−1
u3

(u1) = σ−1
u1

(u3) =

σu3(u1), which means that u2 = u3, a contradiction. Therefore, one of ρ12ρ13 or ρ12ρ14 is

a non-trivial automorphism of G which is the identity on at least 3
32
ν − 1

2
elements of P.

It follows from Corollary 8 that 3
8
ν − 2 6 1

4
ν, which it contradicts n > 3. �

Lemma 10. The group Γ generated by {σuσ
−1
v |u, v ∈ V (G)} is Abelian and it acts

transitively on V (G).

Proof. Consider the arbitrary vertices u, v, x, y ∈ V (G). By Lemma 6, σvσ
−1

σ−1
u (v)

(u) = v,

meaning that Γ acts transitively on V (G). Applying Lemma 9, we have (σuσ
−1
v )(σxσ

−1
y ) =

σuσ
−1
x σvσ

−1
y = σxσ

−1
u σyσ

−1
v = (σxσ

−1
y )(σuσ

−1
v ). So, Γ is Abelian. �
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Lemma 11. The order of G is either 256 or 16384.

Proof. Applying Lemmas 9 and 10, we find that G admits a transitive automorphism

group whose order is a power of 2. It follows from the orbit-stabilizer theorem that

n2 + 3n − 2 = 2t, for some integer t. We have (2n + 3)2 = 2t+2 + 17. Using a result in

[2, p. 401], we obtain that (n, t) ∈ {(1, 1), (2, 3), (3, 4), (10, 7)}. Since n > 3, we conclude

that (n, ν) ∈ {(3, 256), (10, 16384)}. �

Now, the proof of Theorem 1 is finally completed after proving Lemma 11. Notice

that we employed the assumption (1) only in the proof of Lemma 2. As mentioned before,

we believe that (1) automatically holds for any diamond-free SRG((n2 + 3n− 2)2, n(n2 +

3n− 1), 2, n(n+ 1)).

IV. Partial Quadrangle PQ(3, 35, 20)

In the following, we demonstrate that there exists no PQ(3, 35, 20), or equivalently, there

is no diamond-free SRG(676, 108, 2, 20). Notice that this strongly regular graph belongs

to the family (2) with n = 4 and λ = 2.

Theorem 12. There exists no diamond-free SRG(676, 108, 2, 20).

Proof. Suppose, toward a contradiction, that G is a diamond-free SRG(676, 108, 2, 20).

Consider two non-adjacent vertices u, v ∈ V (G). Since G is diamond-free, there are

vertices w ∈ N(u) and v′, v′′ ∈ N(u) such that {v, v′, v′′, w} is a clique. For i = 0, 1, 2, 3,

assume that si is the number of cliques Ω in N(u) of size 3 such that 〈Ω, {v, v′, v′′}〉 has

i edges. By a double counting argument, we find that
s0 + s1 + s2 + s3 = 35;

s1 + 2s2 + 3s3 = 57;

s2 + 3s3 = 21,

which gives s0 = −s3 − 1, a contradiction. �

Acknowledgements

The research of the first author was in part supported by a grant from IPM (No. 91050405).

13



References

[1] M. Behbahani and C. Lam, Strongly regular graphs with non-trivial automorphisms, Dis-

crete Math. 311 (2011), 132–144.

[2] F. Beukers, On the generalized Ramanujan-Nagell equation, I, Acta Arith. 38 (1980/81),
389–410.

[3] A.V. Bondarenko and D.V. Radchenko, On a family of strongly regular graphs with
λ = 1, J. Combin. Theory Ser. B, in press.

[4] R.C. Bose and T. Shimamoto, Classification and analysis of partially balanced incomplete
block designs with two associate classes, J. Amer. Statist. Assoc. 47 (1952), 151–184.

[5] P.J. Cameron, Partial quadrangles, Quart. J. Math. Oxford Ser. (2) 26 (1975), 61–73.

[6] W.H. Haemers and E. Spence, The pseudo-geometric graphs for generalized quadrangles
of order (3, t), European J. Combin. 22 (2001), 839–845.

[7] J.H. van Lint and A. Schrijver, Construction of strongly regular graphs, two-weight
codes and partial geometries by finite fields, Combinatorica 1 (1981), 63–73.

14


