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Abstract

The method of partitionable sets for constructing large sets of t-designs have now been used
for nearly a decade. The method has resulted in some powerful recursive constructions and
also existence results especially for large sets of prime sizes. Perhaps the main feature of
the approach is its simplicity. In this paper, we describe the approach and show how it is
employed to obtain some of the recursive theorems. We also review the existence results and
recursive constructions which have been found by this method.
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1 Introduction

A large set of t-(v, k, λ) designs of size N is a partition of the set of all k-subsets of a v-set
into block sets of t-(v, k, λ) designs, where N =

(
v−t
k−t

)
/λ. Large sets by themselves are not only

interesting combinatorial arrangements, but also they provide a possible setting for the study
of the existence problem of t-designs. The celebrated theorem of Teirlink on the existence of
t-designs for all t involves constructing large sets of t-designs.

The known existence results on large sets have been obtained by various methods which are
very different in nature. In 1975, Baranyai settled the existence of large sets of Steiner 1-designs
[7]. Later, Hartman using this result established the existence of large sets of 1-designs in general
[17]. During the seventies of the last century, many combinatorialists worked on the problem of
large sets of Steiner triple systems. But it was Lu who finally solved the problem in 1984 [28] with

1This research was partially supported by a grant from IPM.
2Corresponding author, email: rezagbk@ipm.ir.
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a few exceptions which later on were completed by Teirlink [37]. Later, the existence problem
for large sets of designs with t = 2 and k = 3 was solved [28, 29, 32, 33, 37, 41]. The next great
achievement was obtained by Teirlink who showed that large sets of t-designs exist for all t [39].
In 1987, an important conjecture by Hartman (also known as halving conjecture) which asserts
that large sets of size 2 exist for all parameter sets satisfying the trivial necessary conditions
appeared [17]. This conjecture inspired the researchers in this field and initiated many new
results on the existence problem of large sets. A new approach sprouted out from these efforts
now known as the method of partitionable sets. The best result found by this method is due to
Ajoodani-Namini who showed that the halving conjecture is true for 2-designs [1]. After that,
the method was used for constructing large sets of prime sizes. At present most of the results
obtained by the approach of partitionable sets is for large sets of prime sizes, although some
important recursive constructions have also been found for large sets in the general case. One of
the main features of this approach is its simplicity. For example, Teirlink’s long and complicated
proof of the existence of t-designs for all t can be established in less than a page by the use of
partitionable sets. The approach has also provided some extension theorems which are unique
in design theory in the sense that no further conditions are imposed on the parameters. In this
paper, after definitions and review of the known results by other methods, we first describe the
approach and review the results which have been found for large sets of any sizes. Then we
pay our attention to large sets of prime sizes. There are nice results on large sets of prime sizes
including the notion of root cases which is discussed in Sections 7 and 8. Throughout the paper,
we provide proofs for some theorems for clarification and instructional purposes. Large sets of
sizes 2 and 3 are of special interest and there are more comprehensive results for them. We
devote a separate section to these cases. The existence results obtained by the approach are
reviewed in Section 9. We finish the paper with some open problems.

2 Definitions and Preliminaries

Let t, k, v and λ be integers such that 0 ≤ t ≤ k ≤ v and λ > 0. Let X be a v-set and Pk(X)
denote the set of all k-subsets of X. A t-(v, k, λ) design (briefly a t-design) is a pair D = (X,D)
in which D is a collection of elements of Pk(X) (called blocks) such that every t-subset of X
appears in exactly λ blocks. If D has no repeated blocks, then D is called simple. Here we are
concerned only with simple designs. Note that (X, Pk(X)) is a t-(v, k,

(
v−t
k−t

)
) design which is

called the complete design.

A simple counting argument shows that a t-(v, k, λ) design is also an i-(v, k, λi) design for
0 ≤ i ≤ t, where λi = λ

(
v−i
t−i

)
/
(
k−i
t−i

)
. In particular, λ0 is the number of blocks in the design.
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Hence, a set of necessary conditions for the existence of a t-(v, k, λ) design is

λ

(
v − i

t− i

)
≡ 0

(
mod

(
k − i

t− i

))
, 0 ≤ i ≤ t. (2.1)

Using
(
v−i
t−i

)(
v−t
k−t

)
=

(
v−i
k−i

)(
k−i
t−i

)
, one can easily see that the conditions (2.1) are equivalent to

λ

(
v − i

k − i

)
≡ 0

(
mod

(
v − t

k − t

))
, 0 ≤ i ≤ t. (2.2)

The minimum value of λ satisfying (2.1) is denoted by λmin and any other feasible λ is clearly
an integral multiple of λmin. The λ of the complete design is denoted by λmax.

Some more notation. Let

Dd(x) = {B \ {x}| x ∈ B ∈ D},

Dr(x) = {B| x 6∈ B ∈ D},

Dc(x) = {X \B| B ∈ D},

Ds = {B| B 6∈ D}.

Then Dd(x) = (X \ {x},Dd(x)) and Dr(x) = (X \ {x},Dr(x)) are (t − 1)-(v − 1, k − 1, λ) and
(t − 1)-(v − 1, k, λt−1 − λ) designs, respectively, and are called derived and residual designs of
D with respect to x. By the inclusion-exclusion principle, it is also seen that for t ≤ v − k,
Dc = (X,Dc) is a t-(v, v−k, λc) design, where λc =

∑t
i=0(−1)t

(
t
i

)
λi and is called the complement

of D. The supplement of D, Ds = (X,Ds), is a t-(v, k, λmax − λ) design.

Let N ≥ 1. A large set of t-(v, k, λ) designs of size N , denoted by LS[N ](t, k, v), is a set L
of N disjoint t-(v, k, λ) designs Di = (X,Di) such that {Di| 1 ≤ i ≤ N} is a partition of Pk(X).
Note that we have N =

(
v−t
k−t

)
/λ. Sometimes LS[N ](t, k, v) is denoted by LSλ(t, k, v) to show λ.

If λ is one, it can be omitted. By (2.2), we observe that a set of necessary conditions for the
existence of an LS[N ](t, k, v) is

N
∣∣∣(v − i

k − i

)
, 0 ≤ i ≤ t. (2.3)

The derived, residual and complementary large sets of L = {Di} with respect to x are
defined as Ld(x) = {Dd

i (x)}, Lr(x) = {Dr
i (x)} and Lc = {Dc

i} (when t ≤ v − k) which are
LS[N ](t − 1, k − 1, v − 1), LS[N ](t − 1, k, v − 1) and LS[N ](t, v − k, v), respectively. Note that
we can obtain more large sets from a given large set as the following theorem suggests using
derived and residual large sets.

Theorem 2.1 [3, 20] If there exists an LS[N ](t, k, v), then there exist LS[N ](t− i, k− j, v− l)
for all 0 ≤ j ≤ l ≤ i ≤ t.
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Notation Let N, t, and k be given integers such that N > 0 and 0 ≤ t ≤ k. The set of all
v for which an LS[N ](t, k, v) exists is denoted by A[N ](t, k). The set of all v which satisfy the
necessary conditions (2.3) is denoted by B[N ](t, k). Any quadruple (N ; t, k, v) satisfying (2.3)
is called an admissible set of parameters. Throughout this paper, when we speak of quadruples
such as (N ; t, k, v), we implicity suppose that N > 0 and 0 ≤ t ≤ k ≤ v. Hereafter, we let pα be
a prime power where p is prime. Let m and n be positive integers. We denote the quotient and
remainder of division m by n by [m/n] and (m/n), respectively.

Example The block sets of two designs of the unique LS[2](2, 3, 6) are as follows.

D1 = {123, 124, 135, 146, 156, 236, 245, 256, 345, 346},

D2 = {125, 126, 134, 136, 145, 234, 235, 246, 356, 456},

where 123 stands for {1, 2, 3}, etc.

Example The necessary conditions (2.3) are not always sufficient. A hundred and fifty years
ago, Cayley showed that it is possible to have two disjoint 2-(7,3,1) designs and no more [10].
So there are no LS(2, 3, 7) and LS(3, 4, 8).

3 Review of the known large sets

In this section we give a brief account of the known results on the existence of large sets of
t-designs found by various methods. The results obtained by the approach of partitionable sets
which is the main subject of this paper will be presented in the final sections. Some parts of
this section has been taken from [24].

In 1975, Baranyai showed that there exists an LS(1, k, v) if and only if k|v. The proofs
related to this result employ the integrality theorem on flows in transportation networks. Two
proofs can be found in [8, 42]. Hartman has extended the result for all values of k and v as
stated in the following theorem.

Theorem 3.1 [7, 17] A[N ](1, k) = B[N ](1, k) for all positive integers N and k.

Another celebrated theorem was obtained by Lu and Teirlink who showed that LS(2, 3, v)
exists if and only if v > 7 and v ≡ 1, 3 (mod 6). This result was obtained after a lot of works done
by many researchers. The whole story about triple systems is given in the following theorem.
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Theorem 3.2 [28, 29, 32, 33, 37, 41] A[N ](2, 3) = B[N ](2, 3) \ {7} for all positive integers
N .

In 1987, Teirlink proved the following theorem which was greatly acknowledged at the time
since it did offer a proof of existence of t-designs for all values of t.

Theorem 3.3 [39] For all positive integers N and t, there is an integer v such that an
LS[N ](t, t + 1, v) exists.

Note As Theorems 3.1 and 3.2 show all admissible LS(1, k, v) and all admissible LS(2, 3, v) ex-
cept for v = 7 exist. Beyond these cases the only known LS(t, k, v) is an LS(2, 4, 13) constructed
in [13]. Etzion and Hartman have constructed v−5 disjoint 3-(v, 4, 1) designs for v = 5.2n. This
leaves only two more to go for an LS(3, 4, v) [16].

Some other miscellaneous results on the existence of large sets are as follows.

(i) An LSλmin
(3, 4, v) exists if v ≡ 0 (mod 3) [40].

(ii) An LSλmin
(4, 5, 20v + 4) exists if gcd(v, 30) = 1 [38].

(iii) An LS60(4, 5, 60v + 4) exists if gcd(v, 60) = 1, 2 [38].

Alltop [6] has proved a theorem on extending t-designs. We state a similar result for large
sets. The proof is essentially the same.

Theorem 3.4 Let t be even and N be a positive integer or, let t be odd and N = 2. If there
exists an LS[N ](t, k, 2k + 1), then there exists an LS[N ](t + 1, k + 1, 2k + 2).

The theorem has a useful consequence.

Corollary 3.1 An LS[2](2, k, 2k) exists if and only if k is not a power of 2.

Proof
(
2k−1
k−1

)
and

(
2k−2
k−2

)
are even if and only if k is not a power of 2 (see for example Theorem

4.1). Therefore, by Theorem 3.1, an LS[2](1, k − 1, 2k − 1) exists if and only if k is not a power
of 2. Now the assertion follows from Theorem 3.4. �

Small cases of large sets play an important role in the constructions of large sets in general.
They are initial points in recursive methods to produce infinite families of large sets. In [22],
all parameter sets on less than or equal 12 points have been settled. In [12], a table on the
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existence of large sets with at most 18 points is presented, but it has to be updated. Most of
small designs have been found by prescribing some groups as automorphism groups of designs.
This approach was formulated for the first time by Kramer and Mesner [23]. The idea is simply
that if there exist t-(v, k, λ) designs, then probably some of them have nontrivial automorphism
groups. Therefore, we can reverse the procedure and try some suitable groups as automorphism
groups of desired designs. This approach can be used both computationally and theoretically.
Using computer and sometimes hand checking, many small designs and large sets have been
constructed by the method. The results can be found in the literature. A reference list includes
[11, 12, 14, 21, 22, 23, 26, 27]. The only remarkable theoretic works done so far are related to
the groups PSL(2, q) and PGL(2, q). Here, we do not have the intention to present those results.
The reader can consult [9, 15, 18, 19, 27, 31]

4 The necessary conditions

In this section, the necessary conditions for the existence of LS[N ](t, k, v) as given in (2.3) are
dealt with. It is possible to give an alternative description of (2.3) when N is a prime power. If
N is not a prime power, then we can factorize it into prime powers and apply our results to its
prime power factors. The main theorem is as follows.

Theorem 4.1 [20] The quadruple (pα; t, k, v) is admissible if and only if there exist distinct
positive integers `i (1 ≤ i ≤ α) such that t ≤ (v/p`i) < (k/p`i).

Example By Theorem 4.1, LS[55](2, 4, 13) is admissible. Since we have 2 ≤ (13/5) < (4/5)
and 2 ≤ (13/11) < (4/11).

Example What is the largest value of t for which LS[13](t, 9, 18) is admissible? By Theorem
4.1, we must have t ≤ (18/13α) < (9/13α) and hence α = 1 and tmax = 5.

Using this theorem, we can easily determine all the admissible sets of parameters for N = p:

(p; t, k, v) = (p; t, mpz + r, npz + s), (4.1)

where 0 ≤ t ≤ s < r < pz and 0 ≤ m < n. We can also assume that z is the smallest or the
greatest number with the properties above to be assured of the uniqueness of the representation
(4.1). By Theorem 4.1, we are also able to identify B[N ](t, t + 1) completely.

Theorem 4.2 [20] Let
∏s

i=1 pαi
i be the prime power factorization of N . For 1 ≤ i ≤ s, suppose
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that psi−1
i ≤ t + 1 < psi

i . Then

B[N ](t, t + 1) =

{
v
∣∣ v ≡ t mod

s∏
i=1

pαi+si−1
i

}
.

The following result is due to Teirlink and it can be obtained from Theorem 4.2.

Theorem 4.3 [36] For k = t + 1, we have

λmin = gcd(v − t, lcm(1, . . . , t + 1)).

Proof Let
∏s

i=1 pαi
i be the prime power factorization of v − t and let psi−1

i ≤ t + 1 < psi
i for

1 ≤ i ≤ s. If v ∈ B[N ](t, t + 1), then by Theorem 4.2, N is at most equal to
∏s

i=1 pαi−si+1
i .

Therefore, λmin = λmax/N =
∏s

i=1 psi−1
i . This proves the assertion. �

We bring this section to an end by presenting another useful application of Theorem 4.1.

Theorem 4.4 [20] Let 0 ≤ t < k. Then the minimal element of B[pα](t, k) is equal to

vmin = ([k/p`+α−1] + 1)p`+α−1 + t

in which ` is the smallest positive integer such that (k/p`) > t.

5 The approach of partitionable sets

A powerful approach for the construction of large sets is obtained from the notion of (N, t)-
partitionable sets which was first introduced in [5]. This idea is indeed a generalization of the
notion of large sets, where we consider t-balanced partition of a subset B of Pk(X) instead of
the whole set Pk(X). Let B1,B2 ⊆ Pk(X). We say that B1 and B2 are t-equivalent if every
t-subset of X appears in the same number of blocks of B1 and B2. If there exists a partition of
B ⊆ Pk(X) into N mutually t-equivalent subsets, then B is called an (N, t)-partitionable set. In
the literature of design theory, (2, t)-partitionable sets are very well known objects called trades.
So one can also consider (N, t)-partitionable sets as a generalization of trades. Let X1 and X2

be two disjoint sets and let Bi ⊆ Pki
(Xi) for i = 1, 2. Then we define

B1 ∗ B2 = {B1 ∪B2| B1 ∈ B1, B2 ∈ B2}.

There are two important lemmas concerning (N, t)-partitionable sets. The first one is trivial
while the other one is a very unexpected.
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Lemma 5.1 [5] (i) t-equivalence implies i-equivalence for all 0 ≤ i ≤ t.
(ii) The union of disjoint (N, t)-partitionable sets is again an (N, t)-partitionable set.

Lemma 5.2 [5] Let X1 and X2 be two disjoint sets and let Bi ⊆ Pki
(Xi) for i = 1, 2. Suppose

that B1 is (N, t1)-partitionable. Then

(i) B1 ∗ B2 is (N, t1)-partitionable.
(ii) If B2 is (N, t2)-partitionable, then B1 ∗ B2 is (N, t1 + t2 + 1)-partitionable.

The importance of Lemma 5.2 is seen at the first glance. In the theory of t-designs, extension
theorems which increase the value of t are very rare (one example is Theorem 3.4). If Lemma
5.2 is employed in a clever way, then very useful extension theorems can be found. We can now
state our method for constructing large sets based on Lemmas 5.1 and 5.2. Suppose that we are
looking for an LS[N ](t, k, v) on a v-set X. We try to partition Pk(X) in a such a way that each
part of the partition is an (N, t)-partitionable set. If this done, then by Lemma 5.1, Pk(X) will
be an (N, t)-partitionable set which means that we have obtained an LS[N ](t, k, v). Each part B
in the partition is usually of the form Pk1(X1)∗Pk2(X2) where X1 and X2 are disjoint subsets of
X and k = k1 + k2. If there exist LS[N ](t1, k1, v1) and LS[N ](t2, k2, v2) and t = t1 + t2 + 1, then
by Lemma 5.2, B is (N, t)-partitionable. The approach is understood better with the following
simple example.

Example. Construction of an LS[2](2, 3, 10) from an LS[2](2, 3, 6). Let X = {1, 2, . . . , 10} and
consider the following partitioning of P3(X):

B1 = P3({1, . . . , 6}),

B2 = P2({1, . . . , 5}) ∗ P1({7, . . . , 10}),

B3 = P1({1, . . . , 4}) ∗ P2({6, . . . , 10}),

B4 = P3({5, . . . , 10}).

B1 and B4 are (2,2)-partitionable by the assumption. By Theorem 2.1, there exist LS[2](1, 2, 5)
and LS[2](0, 1, 4). Therefore, B2 and B3 are (2,2)-partitionable sets by Lemma 5.2. Now Lemma
5.1 shows that P3(X) is (2,2)-partitionable set, i. e. an LS[2](2, 3, 10) is constructed.

The general form of the partitioning given in the examples above is as follows.

Lemma 5.3 [5] Let X = {1, 2, . . . , u + v} and also for 1 ≤ j ≤ u + v, let Xj = {1, 2, . . . , j}
and Yj = X \Xj. For 0 ≤ i ≤ k, define

Bi = Pk−i(Xu−i) ∗ Pi(Yu−i+1).

Then Bi provide a partitioning of Pk(X).
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A more complicated generalization of Lemma 5.3 is given in the following lemma.

Lemma 5.4 [2] Let a, b, s, k, v1 and v2 be nonnegative integers such that s < k ≤ min{v1, v2}
and s = k − 1 − a − b. Let X = {1, 2, . . . , v1 + v2 − s} and also for 1 ≤ j ≤ v1 + v2 − s, let
Xj = {1, 2, . . . , j} and Yj = X \Xj. Consider the following subsets of Pk(X):

Ai = Pk−i(Xv1) ∗ Pi(Yv1), 0 ≤ i ≤ a,

Bj = Pk−a−j(Xv1−j) ∗ Pa+j(Yv1−j+1), 1 ≤ j ≤ s,

Cl = Pl(Xv1−s) ∗ Pk−l(Yv1−s), 0 ≤ l ≤ b.

Then Ai,Bj and Cl partition Pk(X).

Another useful partitioning is given in the next lemma. Before stating the lemma, we give
an example of this partitioning.

Example. An LS[2](2, 7, 10) (and therefore an LS[2](2, 3, 10)) may be constructed from an
LS[2](2, 3, 6). Let X = {1, 2, . . . , 10} and consider the following partitioning of P7(X):

B3 = P3({1, 2, 3}) ∗ {{4}} ∗ P3({5, . . . , 10}),

B4 = P3({1, . . . , 4}) ∗ {{5}} ∗ P3({6, . . . , 10}),

B5 = P3({1, . . . , 5}) ∗ {{6}} ∗ P3({7, . . . , 10}),

B6 = P3({1, . . . , 6}) ∗ {{7}} ∗ P3({8, 9, 10}).

B3 and B6 are (2,2)-partitionable by the assumption and Lemma 5.2. By Theorem 2.1, there
exist LS[2](0, 3, 4) and LS[2](1, 3, 5). Therefore, B4 and B5 are (2,2)-partitionable sets by Lemma
5.2. Now Lemma 5.1 shows that P7(X) is (2,2)-partitionable set, i. e. an LS[2](2, 7, 10) is
constructed.

Lemma 5.5 [35] Let X = {1, 2, . . . , v} and also for 1 ≤ j ≤ v, let Xj = {1, 2, . . . , j} and
Yj = X \Xj. For a ≤ i ≤ v − b− 1, define

Bi = Pa(Xi) ∗ {{i + 1}} ∗ Pb(Yi+1).

Then Bi provide a partitioning of Pa+b+1(X).

We now use the approach to prove a simple recursive method which has been known for a
long time at least for t-designs.

Lemma 5.6 If there exist an LS[N ](t, k, v) and an LS[N ](t, k + 1, v), then there exists an
LS[N ](t, k + 1, v + 1).
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Proof Let X be a v-set and x 6∈ X. Consider the following partitioning of Pk+1(X ∪ {x}):

B0 = Pk+1(X),

B1 = {{x}} ∗ Pk(X).

By the assumption B0 is (N, t)-partitionable. Also Pk(X) is an (N, t)-partitionable set by the
assumption and therefore by Lemma 5.2, B1 is (N, t)-partitionable. Now the assertion follows
from Lemma 5.1. �

6 General recursive constructions

In this section we present some recursive constructions for large sets of any size which are
obtained by the approach of (N, t)-partitionable sets. Large sets of prime sizes will be tackled
in the next section. It is worth to note that except for Theorem 3.4, all known recursive
constructions for large sets were found through this approach. The first theorem is a result of
Lemma 5.6 and an induction argument.

Theorem 6.1 [20] If there exist LS[N ](t, k+i, v) for all 0 ≤ i ≤ l, then there exist LS[N ](t, k+
i, v + j) for all 0 ≤ j ≤ i ≤ l.

Theorem 6.2 [2] Let a, b, c, d, t, s, k, v1 and v2 be nonnegative integers such that t ≤
s < k ≤ min{v1, v2} and s = k − 1 − a − b = t + c + d. Let v1 ∈ ∩k

i=k−aA[N ](t, i), v2 ∈
∩k

i=k−bA[N ](t, i), v1 − l ∈ A[N ](t, k − a − l) for 1 ≤ l ≤ c and v2 − l ∈ A[N ](t, k − b − l) for
1 ≤ l ≤ d. Then v1 + v2 − s ∈ A[N ](t, k).

Proof Let X, Xj , Yj , Ai,Bj and Cl be as defined in Lemma 5.4. We show that Ai,Bj and Cl

are (N, t)-partitionable sets. Let 0 ≤ i ≤ a and 0 ≤ l ≤ b. By the assumption, Pk−i(Xv1) and
Pk−l(Yv1−s) are (N, t)-partitionable sets and so are Ai and Cl by Lemma 5.2. Let 1 ≤ j ≤ s.
If 1 ≤ j ≤ c, then by the assumption, Pk−a−j(Xv1−j) is (N, t)-partitionable and so is Bj by
Lemma 5.2. If s − d < j ≤ s, then by the assumption, Pa+j(Yv1−j+1) is (N, t)-partitionable
and so is Bj by Lemma 5.2. Now let c < j ≤ s − d. Then, by Theorem 2.1, Pk−a−j(Xv1−j)
and Pa+j(Yv1−j+1) are (N, t− j + c)-partitionable and (N, j − c− 1)-partitionable, respectively.
Therefore, by Lemma 5.2, Bj is (N, t)-partitionable. �

Corollary 6.1 If LS[N ](t, i, v) exist for t + 1 ≤ i ≤ k and an LS[N ](t, k, u) also exists, then
LS[N ](t, k, u + l(v − t)) exist for all l ≥ 1.

Proof It suffices to prove the assertion for l = 1. The statement then will follow by induction.
In Theorem 6.2, put a = k − t− 1, b = c = d = 0, v1 = v and v2 = u. �
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Corollary 6.2 If LS[N ](t, i, v + i) exist for t+1 ≤ i ≤ k and an LS[N ](t, k, u) also exists, then
LS[N ](t, k, u + l(v + 1)) exist for all l ≥ 1.

Proof In Theorem 6.2, put a = b = d = 0, c = k − t− 1, v1 = v + k and v2 = u. This proves
the assertion for l = 1. Now use induction. �

Corollary 6.3 If an LS[N ](t, t + 1, v + t) exists, then LS[N ](t, t + 1, lv + t) exist for all l ≥ 1.

Proof This is an immediate result of Corollary 6.1 for k = t + 1. �

7 Large sets of prime sizes

The approach of (N, t)-partitionable sets has been mainly used to obtain recursive constructions
for large sets of prime sizes. Theorems 7.1 and 7.2 are due to Ajoodani-Namini and provide an
alternative proof of Teirlink’s result on the existence of t-designs for all t. Ajoodani-Namini’s
method has two merits: first it is simpler than Teirlink’s, and secondly it provides designs with
parameters which are much smaller than the parameters of those of Teirlink.

Theorem 7.1 [3] If there exists an LS[p](t, k, v− 1), then there exist LS[p](t+1, pk + i, pv + j)
for all 0 ≤ j < i ≤ p− 1.

Theorem 7.2 [3, 34] If there exists an LS[p](t, k, v−1), then there exist LS[p](t, pk+ i, pv + j)
for all −p ≤ j < i ≤ p− 1.

Theorems 7.1 and 7.2 could be utilized to produce a large number of infinite families of
large sets. Note that these theorems are unique in design theory in the sense that they impose
no further conditions on the parameters. By this, we mean that if a large set with whatever
parameters is given, then using it one can construct infinite families of large sets. This is true
since any large set of size N leads to a large set of size p for any prime divisor p of N .

We include some applications of Theorems 7.1 and 7.2.

Theorem 7.3 Let t ≥ 6 and m ≥ 2. Then there exists an LS[2](t, 2t−3 − 1,m2t−3 − 2).
Especially, there exists a t-design for any t.

Proof Using Theorem 7.1 and noting that there exists an LS[2](6, 7, 14) [25], we obtain large
sets LS[2](6, 7, 8m− 2) for all values of m ≥ 2. �
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Theorem 7.4 Let t ≥ 0 and let ai and bi (0 ≤ i ≤ t) be integers such that 1 ≤ bi ≤ ai ≤ p− 1
for 0 ≤ i < t and p|

(
bt−1
at

)
. Then there exists an LS[p](t,

∑t
i=0 aip

i,
∑t

i=0 bip
i − 1).

Proof We use an induction on t. If t = 0, then there is an LS[p](0, a0, b0 − 1) since p|
(
b0−1
a0

)
.

Now let t > 0. By the induction hypothesis, there is an LS[p](t−1,
∑t−1

i=0 ai+1p
i,

∑t−1
i=0 bi+1p

i−1).
Hence, by Theorem 7.1, an LS[p](t,

∑t
i=0 aip

i,
∑t

i=0 bip
i − 1) exists. �

Theorem 7.2 is generalized in the following way.

Theorem 7.5 Let ai and bi (0 ≤ i ≤ n) be integers such that −p < bi ≤ ai < p for 0 ≤ i < t.
If there exists an LS[p](t, an, bn − 1), then there exists an LS[p](t,

∑n
i=0 aip

i,
∑n

i=0 bip
i − 1).

Proof We use an induction on n. If n = 0, then there is nothing to be proved. So let
n > 0. By the induction hypothesis, there is an LS[p](t,

∑n−1
i=0 ai+1p

i,
∑n−1

i=0 bi+1p
i − 1). Hence,

by Theorem 7.2, an LS[p](t,
∑n

i=0 aip
i,

∑n
i=0 bip

i − 1) exists. �

We now switch to the recursive theorems which are more specific and need more assumptions.

Theorem 7.6 [35] Let t, k, v and f be positive integers such that v > k > pf and t ≤ (v/pf ) <

(k/pf ). Suppose that for every u < v the following holds:
(i) If u ≥ pf − 1 and t ≤ (u/pf ) < pf − 1, then u ∈ A[p](t, pf − 1),
(ii) If u ≥ k − pf and (u/pf ) = (v/pf ), then u ∈ A[p](t, k − pf ).

Then v ∈ A[p](t, k).

Proof Let X = {1, . . . , v} and let Xj = {1, . . . , j} and Yj = X \Xj for j = 1, . . . , v. Assume
that

Bh = Ppf−1(Xh) ∗ {{h + 1}}Pk−pf (Yh+1), pf − 1 ≤ h ≤ v − k + pf − 1.

By Lemma 5.5, the sets Bh partition Pk(X). By Lemma 5.1, it suffices to show that each Bh is
(N, t)-partitionable.

First suppose that (h/pf ) = pf−1. Then ((v−1−h)/pf ) = (v/pf ) and hence Pk−pf (Yh+1) is
(p, t)-partitionable by the assumption which in turn concludes that Bh is (p, t)-partitionable by
Lemma 5.2. If t ≤ (h/pf ) < pf −1, then Ppf−1(Xh) is (p, t)-partitionable by the assumption and
so is Bh by Lemma 5.2. Now let (h/pf ) = r < t. Then Ppf−1(Xh+t−r) is (p, t)-partitionable by
the assumption. It yields that Ppf−1(Xh) is (p, r)-partitionable by Theorem 2.1. We also have
((v− h + r)/pf ) = (v/pf ). Therefore, Pk−pf (Yh−r) is (p, t)-partitionable by the assumption. By
Theorem 2.1, we obtain that Pk−pf (Yh+1) is (p, t − r − 1)-partitionable. Therefore, by Lemma
5.2, Bh is a (p, t)-partitionable set. �
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Theorem 7.6 is used to obtain the following results.

Theorem 7.7 [35] Let t, k, v, f and h be positive integers such that f ≤ h and tph−f ≤ (v/ph) <

(k/ph). Suppose that pf + t ∈ A[p](t, i) for t + 1 ≤ i ≤ min(k, (pf + t)/2). Then v ∈ A[p](t, k).

Theorem 7.8 [35] Let t, k, f and n be positive integers such that f ≤ n, t ≤ pf−1/2 and
pn−1 ≤ k < pn. Suppose that pf + t ∈ A[p](t, i) for t + 1 ≤ i ≤ min(k, (pf + t)/2). Then the
following holds:

(i) If v ∈ A[p](t, k), then v + pn ∈ A[p](t, k),
(ii) If t ≤ (v/pn) < k and v > 2pn, then v ∈ A[p](t, k).

8 Root cases of large sets of prime sizes

Theorem 7.6 shows that many large sets of prime sizes can be constructed from smaller large
sets. Theorem 7.7 demonstrates that for given t and k there are a finite number of certain large
sets which suffice to produce large sets for every possible value of v. We call these large sets root
cases. The root cases of large sets of size 2 have already been determined by Ajoodani-Namini
[1]. He has also constructed them for t = 2 and arbitrary k. There are similar results for large
sets of any prime size. The proofs of Theorems 8.1 and 8.2 below are similar and hence we only
present the proof of the latter case.

Theorem 8.1 [1] Let t, k and s be positive integers such that 2s − 1 ≤ t < 2s+1 − 1 and t < k.
Suppose that for every j and n such that 0 ≤ j ≤ [t/2] and t + 1 ≤ 2n + j ≤ k, there exists an
LS[2](t, 2n + j, 2n+1 + t). Then A[2](t1, k1) = B[2](t1, k1) for all 2s−1 ≤ t1 ≤ t and t1 < k1 ≤ k.

Theorem 8.2 [20] Let p be an odd prime and let t, k and s be nonnegative integers such that
ps − 1 ≤ t < ps+1 − 1 and t < k. Suppose that the following conditions hold:

(i) There exists an LS[p](t, k′, ps+1 + t) for every t + 1 ≤ k′ ≤ min(k, (ps+1 + t)/2),
(ii) There exists an LS[p](t, ipn + j, pn+1 + t) for every i, j and n such that 0 ≤ j ≤ t, 1 ≤ i ≤
(p− 1)/2, ipn + j ≤ k and n > s.

Then A[p](t1, k1) = B[p](t1, k1) for all ps − 1 ≤ t1 ≤ t and t1 < k1 ≤ k.

Proof We use an induction on t1 + k1. First let t1 = ps − 1 and k1 = ps. From LS[p](t, t +
1, ps+1 + t) and Theorem 2.1 we obtain LS[p](t1, k1, p

s+1 + t1). Therefore, we are done by
Theorems 4.2 and 7.7.
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Now suppose that 2ps − 1 < t1 + k1 ≤ t + k, t1 ≤ t and t1 < k1. Suppose that `1 is the
smallest positive integer such that (k1/p`1) > t1. Assume that we have shown that

p`1 + t1 ∈ A[p](t1, k′), for all t1 + 1 ≤ k′ ≤ min(k1, (p`1 + t1)/2). (8.1)

Let v ∈ B[p](t1, k1). By Theorem 4.1, there exists r ≥ `1 such that t1 ≤ (v/pr) < (k1/pr). We
have

[v/pr]pr + t1 ∈ A[p](t1, [k1/pr] pr + j),

for all (k1/pr)− (v/pr)+ t1 ≤ j ≤ (k1/pr). Because, if j < (k1/pr), we are done by the induction
hypothesis. If j = (k1/pr), then it holds by (8.1) and Theorem 7.7. Hence, by Theorem 6.1,
v = [v/pr]pr + (v/pr) ∈ A[p](t1, k1).

Now we prove (8.1). If k1 > (p`1 + t1)/2, then it follows from the induction hypothesis. So
let

k1 ≤
p`1 + t1

2
. (8.2)

By the induction hypothesis, it is sufficient to establish the existence of an LS[p](t1, k1, p
`1 + t1).

From (8.2), we have [k1/p`1 ] = 0. Therefore, `1 ≥ s+1. If `1 = s+1, then by (i), we can obtain
LS[p](t1, k1, p

s+1 + t1) from LS[p](t, max(t+1, k1), ps+1 + t) using Theorem 2.1. So suppose that
`1 > s + 1. Let [k1/p`1−1] = i and (k1/p`1−1) = j. Clearly j ≤ t1 ≤ t. By (8.2), we also obtain
that i ≤ (p− 1)/2. Now LS[p](t, ip`1−1 + j, p`1 + t), which exists by (ii), can be employed to find
an LS[p](t1, ip`1−1 + j, p`1 + t1) via Theorem 2.1. �

9 More results on large sets of sizes two and three

In the last two section we presented some recursive constructions and theorems for large sets
of prime sizes. It is possible to find more comprehensive results for large sets of sizes two and
three. We will give the existence results obtained by the following theorems in the next section.

Theorem 9.1 [2] Let t, k, f and n be positive integers such that f < n, t ≤ 2f−2 and 2n−1 ≤
k < 2n. Suppose that A[2](t, i) = B[2](t, i) for t < i < 2f . Then

(i) B[2](t, k) \A[2](t, k) ⊂ {2n + j | t ≤ j < t2n−f},
(ii) If 2n−1 + t2n−f ≤ k < 2n, then A[2](t, k) = B[2](t, k).

Theorem 9.2 [35] Let t, k, f and n be positive integers such that f < n, t ≤ 3f−2 and
3n−1 ≤ k < 3n. Suppose that A[3](t, i) = B[3](t, i) for t < i < 3f . Then

(i) B[3](t, k) \A[3](t, k) ⊂ {3n + j | t ≤ j < t3n−f},
(ii) If 2.3n−1 + t3n−f ≤ k < 3n, then A[3](t, k) = B[3](t, k).
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Theorems 8.1 and 8.2 indicate that one can construct all possible large sets of sizes two and
three from the root cases LS[2](t, 2n + j1, 2n+1 + t) and LS[3](t, 3n + j2, 3n+1 + t), respectively,
where j1, j2, and n are nonnegative integers such that j1 ≤ t/2 and j2 ≤ t. It is quite interesting
that we can introduce different classes of root cases which are not related to t and say the story
for all t. These classes are identified in the following theorems.

Theorem 9.3 If there exists an LS[2](2n−2, 2n−1, 2n+1−2) for every positive integer n, then
A[2](t, k) = B[2](t, k) for any t and k.

Theorem 9.4 If there exists an LS[3](3n− 2, 3n− 1, 2.3n− 2) for every positive integer n, then
A[3](t, k) = B[3](t, k) for any t and k.

Finally, we note that by Theorem 3.4, large sets LS[2](2n−2, 2n−1, 2n+1−2) and LS[3](3n−
2, 3n − 1, 2.3n − 2) can be considered as the extensions of LS[2](2n − 3, 2n − 2, 2n+1 − 3) and
LS[3](3n − 3, 3n − 2, 2.3n − 3), respectively. Therefore, it is possible to consider these latter
classes as root cases which have to be constructed.

10 Existence results

In 1987, Hartman [17] conjectured that the necessary conditions (2.3) are sufficient for the
existence of large sets of size 2. Later Khosrovshahi extended this conjecture to large sets of
sizes 3 and 4 [4]. These conjectures have not yet been settled and their proofs seem to be far
from reach. Note that Theorems 9.1 and 9.2 indicate that for given t if these conjectures are
true for some small values of k, then they will be true for infinitely many values of k. By
now, the best known result concerning these conjectures is due to Ajoodani-Namini who showed
that Hartman’s conjecture is true for t = 2 [1]. By Theorem 8.1, to establish this result, one
should construct two families of large sets LS[2](2, 2n + 1, 2n+1 + 2) and LS[2](2, 2n, 2n+1 + 2).
The first family exists according to Corollary 3.1. Ajoodani-Namini has also constructed the
second family by the use of (2, 2)-partitionable sets. His construction is long and complicated
(see [1] or [2]). We note that Ajoodani-Namini has also shown that Hartman’s conjecture is
true asymptotically for k = t + 1 [2]. He uses the approach of partitionable sets and Teirlink’s
methods in his proof. For large sets of size 3, we know that A[3](2, k) = B[3](2, k) for k ≤ 80
and also for infinitely many values of k [20, 35]. We now summarize the results which have been
obtained by the approach of partitionable sets in the following theorem.

Theorem 10.1 The following results are obtained through partitionable sets.

(1) A[2](2, k) = B[2](2, k) for all k ≥ 2 [1].
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(2) If 3 ≤ t ≤ 5 and k ≤ 15 or, t = 6 and k = 7, 8, 9, then A[2](t, k) = B[2](t, k) [1, 5, 17, 26].

(3) If 2n−1 + 3.2n−4 ≤ k < 2n for a positive integer n > 4, then A[2](3, k) = B[2](3, k) [2].

(4) If k ≤ 80, then A[3](2, k) = B[3](2, k) [20].

(5) If t ≤ 4 and k ≤ 8, then A[3](t, k) = B[3](t, k) [34].

(6) If 2.3n−1 + 2.3n−4 ≤ k < 3n for a positive integer n > 4, then A[3](2, k) = B[3](2, k) [35].

(7) If k ≤ 5, then A[5](2, k) = B[5](2, k) \ {7} [27].

(8) If k ≤ 5, then A[5](3, k) = B[5](3, k) \ {8} [27].

(9) If k ≤ 6, then A[7](2, k) = B[7](2, k) [27].

(10) If k ≤ 10, then A[11](2, k) = B[11](2, k) [27].

(11) If k ≤ 5, then A[29](2, k) = B[29](2, k) [27].

11 Open problems

As the previous sections suggest there are many unsolved problems on large sets of t-designs.
We list some open problems here for further researches.

Problem 1 Construct an LS[3](5, 6, 14). There are five 5-(14, 6, 3) designs known [30], but the
existence of LS[3](5, 6, 14) is in doubt. In the case of nonexistence, it will be a counterexample
for Khosrovshahi’s conjecture on large sets of size 3.

Problem 2 Is it possible to find an LS[2](6, 7, 14) through partitionable sets? All known
examples of this large set have been found by prescribing some groups as automorphism group
of designs.

Problem 3 Construct LS[3](2, 3n + j, 3n+1 +2) for j = 0, 1, 2 and for any n > 3. If these exist,
then we will have A[3](2, k) = B[3](2, k) for all k ≥ 2.

Problem 4 Prove or disprove the existence of LS[2](2n−2, 2n−1, 2n+1−2) for n > 4. If these
large sets exist, then Hartman’s conjecture will be true.

Problem 5 Prove or disprove the existence of LS[3](3n−2, 3n−1, 2.3n−2) for n > 1. If these
large sets exist, then Khosrovshahi’s conjecture on large sets of size 3 will be true.
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Problem 6 Determine root cases for large sets of any sizes. In particular, determine root
cases for large sets of prime power sizes.

Problem 7 Are there general theorems similar to Theorems 7.1 and 7.2 for large sets of prime
power sizes.
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