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Abstract

A direct method for constructing large sets of t-designs is based on

the concept of assembling orbits of a permutation group G on k-

subsets of a v-set into block sets of t-designs so that these designs

form a large set. If G is t-homogeneous, then any orbit is a t-design

and therefore we obtain a large set by partitioning the set of orbits

into parts consisting of the same number of k-subsets. In general,

it is hard to find such partitions. We solve this problem when orbit

sizes are limited to two values. We then use its corollaries to obtain

some results in a special case in which a simple divisibility condition

holds and no knowledge about orbit sizes is assumed.
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1 Introduction

The problem of partitioning a set of subsets of a finite set into parts with
some special regularity conditions has been dealt with extensively in combi-
natorics and graph theory. Large sets of t-(v, k, λ)-designs which are about
partitioning the set of all k-subsets of a v-set into block sets of t-(v, k, λ)
designs are examples of these kinds of problems. Large sets are powerful
tools for the study of the existence problem of t-designs. In this direction,
while there are known few extension theorems for t-designs, a considerable
number of extension methods have been found for large sets, see [1, 2, 9, 10].
These methods are recursive in nature and produce infinite families from
some starting large sets. For the construction of these starting objects, one
usually has to use direct methods.

One direct method for constructing large sets is based on using homo-
geneous groups. Let G be a t-homogeneous permutation group on a v-set
X. Then any orbit from the action of G on k-subsets of X is the block set
of a t-(v, k, λ) design. Therefore we obtain a large set by partitioning the
set of orbits into parts consisting of the same number of k-subsets. We can
formulate the problem as follows. Given the multiset of the sizes of orbits
of G on k-subsets of X, determine all values of N for which a large set of
size N is constructible from combining the orbits. This is a bin-packing
problem which is NP-hard and so in general, it is a hard problem. Nev-
ertheless it can be tackled in some special cases. The problem was first
discussed in [11] where the authors answered the case in which the orbits
were of two sizes, say m and n, and m a multiple of n. We first extend
this result to arbitrary m and n. We then use its corollaries to obtain some
results in a special case in which a simple divisibility condition holds and
no knowledge about orbit sizes is assumed.

2 Definitions

Let t, k, v and λ be integers such that 0 ≤ t ≤ k ≤ v and λ > 0. Let X be a
v-set and Pk(X) denote the set of all k-subsets of X. A (simple) t-(v, k, λ)
design is a pair D = (X, D) in which D is a subset of elements of Pk(X)
(called blocks) such that every t-subset of X appears in exactly λ blocks. A
large set of t-(v, k, λ) designs of size N , denoted by LS[N ](t, k, v), is a set
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of N disjoint t-(v, k, λ) designs (X, Di) such that the Di partition Pk(X).
Note that we must have N =

(
v−t
k−t

)
/λ. A set of well known necessary

conditions for the existence of an LS[N ](t, k, v) is

N
∣∣∣(v − i

k − i

)
, 0 ≤ i ≤ t.

An automorphism of D is a permutation σ on X such that σ(B) ∈ D for
each B ∈ D. An automorphism group of D is a group whose elements are
automorphisms of D. A large set is said to be G-uniform if each of its
designs admits the permutation group G as an automorphism group.

Let G be a finite permutation group on X. For x ∈ X, the orbit of x

is G(x) = {gx| g ∈ G} and the stabilizer of x is Gx = {g ∈ G| gx = x}.
Orbits of size |G| are called regular and other orbits are said to be short.
If there is an x ∈ X such that G(x) = X, then G is called transitive. The
action of G on X induces a natural action on Pt(X). If this latter action
is transitive, then G is called t-homogeneous. All t-homogeneous groups
for t ≥ 2 are known, see for example [7]. For an example of these groups,
we can name the group PSL(2, q) with its natural action on the projective
line. It is 3-homogeneous for q ≡ 3 (mod 4) and is proved to be very useful
in constructing t-designs and large sets, see for example [3, 5, 6, 11, 12].

3 Combining orbits to large sets

In the sequel of the paper we let G be a t-homogeneous permutation group
on a v-set X. It is easy to see that any orbit from the action of G on
Pk(X) is the block set of a t-(v, k, λ) design for some λ. A natural question
which arises is for which values of N , an LS[N ](t, k, v) can be obtained
from a suitable combination of these orbits. This problem in general is a
bin-packing problem which is known to be NP-hard. However, it can be
answered in some special cases. First of all, suppose that all orbits are of
the same size. In this case, the problem is trivial, since we only need N to
be a divisor of the total number of orbits. It is worth noting that it may
not be a trivial task to find the circumstances under which this situation
happens. In [6], this has been discussed for the group PSL(2, q).

The next case is when the orbit sizes are limited to two values. A special
situation of this case is discussed in [11] (see Corollary 3.1). Here, we give
a complete solution. First we need to state the following lemma.
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Lemma 3.1 Let n,m and e be integers. Then the system of equations∑e
i=1 zi = m,

∑e
i=1 izi = n has a nonnegative integer solution if and only

if 0 ≤ m ≤ n ≤ em.

Proof Let 0 ≤ m ≤ n ≤ em. If n = em, then we have the solution
ze = m and zi = 0, otherwise. So let n < em. Take 2 ≤ f ≤ e such
that (f − 1)m ≤ n < fm. Then we have the solution zf−1 = fm − n,
zf = n− (f − 1)m and zi = 0, otherwise. The converse is trivial. �

Theorem 3.1 Suppose that there are exactly ai orbits of size li (i = 1, 2)
in the action of G on Pk(X). For i = 1, 2, let fi = li/(l1, l2), where
(l1, l2) is the greatest common divisor of l1 and l2. Then there exists a
G-uniform LS[N ](t, k, v) if and only if there are integers mi (i = 1, 2) such
that 0 ≤ (−1)imi ≤ (a1a2)/(aifi) and N

∣∣(a1 −mif2, a2 + mif1).

Proof We have l1a1+l2a2 =
(

v
k

)
. Let N be a natural number. Then there

exist nonnegative integers x, y such that l1x + l2y =
(

v
k

)
/N if and only if

there is an integer m with −a2/f1 ≤ m ≤ a1/f2 and N
∣∣∣(a1−mf2, a2+mf1).

This is easy to see, since we have x = (a1−mf2)/N and y = (a2 +mf1)/N .

Let h be the number of nonnegative integer solutions of l1x + l2y =(
v
k

)
/N . If h > 0 and m1 is the smallest m such that −a2/f1 ≤ m ≤ a1/f2

and N
∣∣∣(a1 −mf2, a2 + mf1), then the solutions are

(xi, yi) = (z − if2, yi),

where 1 ≤ i ≤ h and z = (a1 + (N − m1)f2)/N . There exists a G-
uniform LS[N ](t, k, v) if and only if h > 0 and the system of equations∑h

i=1 ni = N ,
∑h

i=1 xini = a1 (in variables ni) has a nonnegative integer
solution (and equivalently so has the system of equations

∑h
i=1 ni = N ,∑h

i=1 ini = (Nz−a1)/f2). By Lemma 3.1, the system has a a nonnegative
integer solution for h > 0 if and only if −a2/f1 ≤ m1 ≤ a1/f2 and

0 ≤ N ≤ Nz − a1

f2
≤ hN,

or equivalently −a2/f1 ≤ m1 and

0 ≤ (a1 −m2f2) ≤ a1 ≤ (a1 −m1f2),
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where m2 = (a1 − Nxh)/f2. This yields that there exists a G-uniform
LS[N ](t, k, v) if and only if there are integers 0 ≤ m2 ≤ a1/f2,−a2/f1 ≤
m1 ≤ 0 such that N

∣∣(a1 −mif2, a2 + mif1) for i = 1, 2. �

The following special case of the above theorem frequently is applicable,
since actions mostly contain regular orbits.

Corollary 3.1 [11] Suppose that there are exactly a1 orbits of size rl

and a2 orbits of size l in the action of G on Pk(X). Then there exists
a G-uniform LS[N ](t, k, v) if and only if there is an integer m such that
0 ≤ m ≤ a2/r and N

∣∣(a1 + m,a2 − rm).

Proof By taking m2 = a1 and m1 = −m in Theorem 3.1, the assertion
follows. �

Remark Note that the above results may also be useful in the general
case. If we are able to combine the orbits to larger sets in a way such that
all resulting sets are only of two sizes, then we can use the above results.
This is demonstrated in the next corollary.

Corollary 3.2 Suppose that the union of all short orbits in the action of
G on Pk(X) is of size |G|r. Then there exists a G-uniform LS[N ](t, k, v)
if and only if N

∣∣(v
k

)
/|G| and N ≤

(
v
k

)
/(|G|r).

Proof Let a1 = 1, l = |G| and m = N−1 in Corollary 3.1. The assertion
is immediate as explained in the above remark. �

4 A special case

In this section we consider a special case in which we can establish the
existence of some G-uniform large sets without having any knowledge about
orbits. To do this, we will assume the extra condition |G|

∣∣(v
k

)
. First we

state two related results.

Theorem 4.1 [11] Suppose that each orbit from the action of G on Pk(X)
is of size either |G| or |G|/m for a fixed integer m. If |G|

∣∣(v
k

)
, then there

exists a G-uniform LS
[(

v
k

)
/|G|

]
(t, k, v).
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A similar theorem is the following.

Theorem 4.2 Suppose that each orbit from the action of G on Pk(X) is
of size |G|, |G|/m, |G|/n or |G|/(mn) for fixed distinct integers m and n.
Moreover, suppose that there is only one orbit of size |G|/(mn). If |G|

∣∣(v
k

)
,

then there exists a G-uniform LS
[(

v
k

)
/|G|

]
(t, k, v).

Proof Let |G|
∣∣(v

k

)
. Let ai be the number of orbits of size |G|/i. From

the assumptions, we have

a1|G|+ am
|G|
m

+ an
|G|
n

+
|G|
mn

=
(

v

k

)
.

Dividing by |G| yields

am

m
+

an

n
+

1
mn

=
(

v

k

)
/|G| − a1 = s,

where s is a natural number at least 1. Let am = bmm + a′m with 0 ≤
a′m < m. Then we subtract bm from both sides to reduce the first fraction
to a value smaller than 1. We reduce the second fraction the same way and
obtain

a′m
m

+
a′n
n

+
1

mn
= s′,

where s′ is a natural number at least 1. We have

na′m + ma′n + 1 ≤ mn− n + mn−m + 1

= 2mn− (m + n− 1)

< 2mn.

Thus, s′ < 2 and so s′ = 1.

We see from the computation that we can assemble bm times m orbits
of size |G|

m to a family of |G| k-subsets and as well bn times n orbits of size
|G|/n to a family of |G| k-subsets such that the union of the remaining
orbits consists again of exactly |G| k-subsets. We have partitioned Pk(X)
into parts each of size |G| such that the claimed result holds. �

Lemma 4.1 Let pf ≡ 3 (mod 4) and let G be the group PSL(2, pf ) acting
on the projective line X. Let k ≥ 3 be odd and p no divisor of k − 1. In
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each of the following cases there exists exactly one orbit of size |G|/l on
Pk(X):

(i) l = k
∣∣pf + 1 and ((k − 1)(k − 2), pf − 1) = 1,

(ii) l = k
∣∣pf − 1,

(iii) l = k − 1
∣∣pf − 1 and (k, pf + 1) = 1,

(iv) l = k − 2
∣∣pf − 1 and (k, pf + 1) = 1.

Moreover, the condition that |G| divides
(
pf +1

k

)
is fulfilled if and only if

k(k − 1)(k − 2) divides 2 ·
(
pf−2
k−3

)
.

The proof is obtained by the same arguments as in [11].

Example Let G and X be as in Lemma 4.1. For k = q1 · q2 with two
different odd primes q1, q2 dividing pf − 1 and k − 1 not divisible by p, by
Lemma 4.1, we obtain that there is exactly one orbit with a stabilizer of
order k. There are

q1

pf − 1

{(pf−1
q1

q2

)
− pf − 1

k

}
=

1
q2

{(pf−1
q1

− 1
q2 − 1

)
− 1

}
orbits with a stabilizer of order q1 and the analogous number for q2. Let
for example pf = 31 and k = 15. Then there are 1, 3, 25, 38010 orbits with
stabilizer orders 15, 5, 3, 1, respectively. Since |G|

∣∣(32
15

)
, by Theorem 4.2,

there exists an LS[N ](3, 15, 32) for N =
(
32
15

)
/|G| = 38019. Generally, for

all prime powers pf such that 15 divides pf − 1 and p > 7, we have that
there is exactly one orbit of 15-subsets with stabilizers of order 15, and
|G| divides

(
pf +1

15

)
if pf − 1 ≡ 3, 6, 9, 18 (mod 27), pf − 1 ≡ 5, 10 (mod 25)

and pf ≡ 2, . . . , 13 (mod 13). By the Chinese Remainder Theorem and
Dirichlet’s Theorem [8] for each combination of the conditions, there exist
infinitely many primes p that fulfill them such that there result infinitely
many large sets of 3-designs with block size 15 from Theorem 4.2. Similar
results can be obtained for other values of k. For example, if we let pf = 127
and k = 23, we find an LS[N ](3, 23, 128) where

N =

(
128
23

)
128 · 127 · 63

.

Again, there are infinitely many cases of primes like 127 where the same
congruences are fulfilled and large sets of block size 23 result.

We now come to the main theorem.
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Theorem 4.3 Let |G|
∣∣(v

k

)
and |G| =

∏r
i=1 pmi

i , where the pi are distinct
primes and pi < pj if i < j. Then m =

∑r
i=1

( ∏r
j=i pj/(pj − 1)

)
≤ 3r and

for any natural number N such that N
∣∣(v

k

)
/|G| and N ≤

(
v
k

)
/(|G|m) there

exists a G-uniform LS[N ](t, k, v).

Proof First we show that
∑r

i=1

( ∏r
j=i pj/(pj − 1)

)
≤ 3r. Let qi be the

ith prime number in the natural order of prime numbers. It is easily seen
that qi/(qi − 1) ≤

√
(i− 1)/(i− 2) for i > 2. We have

r∑
i=1

( r∏
j=i

pj

pj − 1
)
≤

r∑
i=1

( r∏
j=i

qj

qj − 1
)

≤ 3
r∏

j=3

√
j − 1
j − 2

+
3
2

r∏
j=3

√
j − 1
j − 2

+
r∑

i=3

( r∏
j=i

√
j − 1
j − 2

)

=
√

r − 1
(9

2
+

r−2∑
i=1

1√
i

)
≤
√

r − 1
(9

2
+

∫ r−2

1

1√
x

dx + 1
)

≤
√

r − 1
(7

2
+ 2

√
r − 2

)
≤ 3r.

For a natural integer n, let S(n) be the sum of its divisors. Then, by a
well known result from number theory (see for example [8, Theorem 275]),
if n =

∏s
i=1 qni

i , where qi are distinct primes, then

S(n) =
s∏

i=1

qni+1
i − 1
qi − 1

≤ n
( s∏

i=1

qi

qi − 1
)
. (4.1)

We know that any orbit size from the action of G on Pk(X) is a divisor
of |G|. For any divisor f > 1 of |G|, let p(f) be the smallest prime divisor
of f . If there are at least p(f) orbits of size |G|/f , then we replace any p(f)
of them by their union. We repeatedly apply this procedure to all orbits
and intermediate unions until it cannot be applied anymore. Now let O be
the union of all sets of size nonequal to |G|. By the assumption, |O| = l|G|
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for some integer l. From the procedure and (4.1), we have

l|G| ≤
∑

f
∣∣|G|,f>1

(p(f)− 1)|G|
f

=
r∑

i=1

(pi − 1)
( ∑

p(f)=pi

|G|
f

)

=
r∑

i=1

(pi − 1)
( i−1∏

j=1

p
mj

j

)
S

( |G|
pi

∏i−1
j=1 p

mj

j

)
≤ |G|

r∑
i=1

( r∏
j=i

pj

pj − 1

)
.

Therefore, l ≤
∑r

i=1

( ∏r
j=i pj/(pj − 1)

)
. Now that we have one set of

size l|G| and the other sets are of size |G|, by Corollary 3.2, the proof is
complete. �

Theorem 4.4 Let |G|
∣∣(v

k

)
. Suppose that all stabilizer sizes of orbits from

the action of G on Pk(X) are divisors of a fixed natural number n and
(n, |G|) =

∏r
i=1 pmi

i , where the pi are distinct primes and pi < pj if i < j.
Then m =

∑r
i=1

( ∏r
j=i pj/(pj − 1)

)
≤ 3r and there exists a G-uniform

LS[N ](t, k, v) for any natural number N such that N
∣∣(v

k

)
/|G| and N ≤(

v
k

)
/(|G|m).

Proof The proof is similar to that of theorem 4.3. �

We finish the paper with two conjectures.

Conjecture 4.1 We conjecture that it would be possible to let m = r in
Theorems 4.3 and 4.4.

Conjecture 4.2 Let q be an odd prime power and let G = PSL(2, q) if
q ≡ 3 (mod 4) and G = PGL(2, q), otherwise. If |G|

∣∣(q+1
k

)
, then there

exists a G-uniform LS
[(

q+1
k

)
/|G|

]
(3, k, q + 1).

Using the results from [3] and [4], we have checked the second conjecture
for q < 60, see [12].
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