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Abstract. The existence question for the family of 4-(15, 5, λ) designs has

long been answered for all values of λ except λ = 2. Here, we resolve this last

undecided case and prove that 4-(15, 5, 2) designs are constructible.

Introduction

A t-(v, k, λ) design D = (V,B) is a family B of k-subsets, called blocks, of a v-set
V of points, such that every t-subset of V is contained in exactly λ blocks of B. If
B has no repeated blocks, then the design D is called simple. Here, simplicity is
always taken for granted. We further assume that V = {1, 2, . . . , v}. The set of all
k-subsets of V will be denoted here by Vk. (V, Vk) is called the complete design.
Elementary counting arguments show that a t-(v, k, λ) design is also an i-(v, k, λi)
design, for all i, 0 ≤ i ≤ t, where λi = λ

(
v−i
t−i

)
/
(
k−i
t−i

)
.

An isomorphism between (V,B) and (V,B′) is a one-one mapping on the ele-
ments of V such that the blocks of B are mapped onto the blocks of B′. If no
such mapping exists, then the designs are said to be non-isomorphic. The set of
all automorphisms of a design (that is, isomorphisms from a design to itself) forms
a group which acts in a natural way as a permutation group on the points of the
design and consequently on its blocks and is called the full automorphism group
of design. The full automorphism group of D is denoted by Aut(D). A design is
called rigid if its full automorphism group is the trivial group. We also recall the
notion of the normalizer of a group G in a bigger group H as the sub-group of H
consisting of all elements g ∈ H such that g−1Gg = G.

Let (V,B) be a t-(v, k, λ) design and consider the set W ⊂ V with |W | = w < t.
Let V ′ = V \W and B′ = {B\W : B ∈ B,W ⊆ B}. Then (V ′,B′) is a (t − w)-
(v − w, k − w, λ) design called the derived design with respect to W .

In 1976, Kramer and Mesner [6] observed that finding a t-design with a given au-
tomorphism group can be reduced to solving a matrix problem of the form Au = b,
where A is an m×n positive integer matrix built from the required automorphism
group, b is a particular m dimensional integer vector, and u ∈ {0, 1}n.

In order to effectively use this observation, one needs to obtain an efficient pro-
cedure for solving the matrix equation. In this respect, backtracking plays a promi-
nent role [2, 7]. Backtracking constructs a series of feasible solutions by extending
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and collapsing partial feasible solutions one step at a time in an orderly fashion,
until a complete feasible solution is constructed. A search tree is usually pruned by
rejecting partial solutions which do not have the correct structure or are isomorphic
to the ones generated before.

The existence question for the family of 4-(15, 5, λ) has been answered for all
values of 1 ≤ λ ≤ 11 except λ = 2 [1, 5, 9]. In [3, 4], some incidence matrices
are exploited to enforce pruning of the search space in backtracking algorithms. In
Section 1, an outline of the algorithm is provided. In this paper, we employ, with
slight modifications, the same approach to tackle the existence question for the
family of 4-(15, 5, 2) designs and completely classify all 4-(15, 5, 2) designs admitting
an automorphism of order 7 and 13. We also consider possible extensions of these
designs to a 5-(16, 6, 2) design.

1. Constructing t-designs with a prescribed automorphism group

Given a t-(v, k, λ) design (V,B), let Vt = {x1, . . . , xm} and Vk = {y1, . . . , yn},
where m =

(
v
t

)
and n =

(
v
k

)
. Construct the m × n (0, 1) Kramer-Mesner matrix

Avtk = (aij), where aij = 1 if and only if xi ⊆ yj . Now, it is clear that a t-
(v, k, λ) design exists if and only if there is a solution u ∈ {0, 1}n to the equation
Avtku = λJm, where Jm is the m-dimensional all-one column vector. For most
designs of interest, however, Avtk is prohibitively large so that to reduce the size,
one assumes the action of a group G on the set V . Let τt and τk be the number
of orbits under the induced action of G on Vt and Vk, respectively. Denote by
Avtk(G) = (aij) a τt × τk matrix, where aij is the number of k-subsets in the j-th
orbit of Vk containing a representative t-subset in the i-th orbit of Vt. Clearly
Avtk(G) can be obtained from Avtk by adding the columns in each orbit of Vk and
keeping one representative row from each orbit of Vt. A t-design with G as a
sub-group of its full automorphism group exists if and only if there is a vector
u ∈ {0, 1}τk satisfying the equation Avtk(G)u = λJτt

. Note that u is indeed the
vector representation of (V,B), i. e., u is a column vector whose rows are indexed
by the elements of the orbits of Vk such that ui = 1 if and only if B contains the
i-th orbit of Vk.

Let S ⊆ V such that |S| = s . Let ψs be the number of orbits of Vs un-
der the action of G. Define a ψs × τk matrix Mvs

tk (G) whose (i, j)-th entry is∑
K∈κj

(|S⋂
K|−1
t

)
, where S is any representative in the i-th orbit of Vs and κj is

the j-th orbit of Vk under G. In [4], it is shown that Mvs
tk (G)u = bvstkJψs

, where
bvstk =

∑t
i=0 (−1)i+t

(
s
i

)
λi. Note that these equations are not independent from the

original equations. However, they are crucial in backtracking algorithms to find
new designs.

Therefore, to construct a t-(v, k, λ) design (V,B) admitting G as its automor-
phism group, we can employ a backtracking algorithm to find a u ∈ {0, 1}τk satis-
fying the equations Avtk(G)u = λJτt

and Mvs
tk (G)u = bvstkJψs

.



SOME NEW 4-DESIGNS 3

2. Using The derived designs To prune the search space

In the previous section, group actions were employed to reduce the size of the
problem. In this section, we explain how the derived designs can be used to prune
the search space.

Lemma 1. Let D1 = (V1,B1) be a (t − 1)-(v − 1, k − 1, λ) design on the point
set V1 = {2, . . . , v} with a non-trivial automorphism π1. Let V = {1, . . . , v} and fix
σ1 as an element of the normalizer of < π1 > in SV1 , i.e., σ1 ∈ N(< π1 >). Define
π ∈ SV by π = (1)π1 and let D = (V,B) be a t-(v, k, λ) design with the following
properties:
a)D admits π as an automorphism.
b) The derived design of D with respect to the point 1 is D1.
Then there exists a design D′ isomorphic to D with properties (i) and (ii):
i)D′ admits π as an automorphism.
ii)The derived design of D′ with respect to the point 1 is σ1(D1).

Proof. Define σ ∈ SV by σ = (1)σ1. We prove that D′ = σ(D) satisfies the prop-
erties (i) and (ii). From the definition of σ and π we have: σ ∈ N(< π >) and
σ−1πσ(D) = D, which means π ∈ Aut(D′). Since σ fixes 1, the derived design of
σ(D) with respect to the point 1 is σ1(D1), and this completes the proof. �

Now suppose that we want to find all t-(v, k, λ) designs D with a given automor-
phism π of prime order p with π(1) = 1. We can do as follows: Let D1 and π1 be
as in Lemma 1. We first solve the equations mentioned in the previous section to
produce all candidates for D1. According to Lemma 1, for each design D1 and each
σ1 ∈ N(< π1 >), there exists an isomorphic copy σ1(D1) among solutions which
can be discarded. We call this process normalizer isomorphism test. We can now
obtain possible extensions of the remaining derived designs which admit π as an
automorphism. Clearly, there might still be isomorphic copies of solutions which
have to be rejected. We do this process in three phases: First we use the normalizer
isomorphism test to reject isomorphisms under normalizers. Second we determine
the order of the full automorphism group of each of the remaining designs. In this
step any two designs D and D′ with |Aut(D)| = |Aut(D′)| = p are clearly non-
isomorphic. Thus in the third step we concentrate on designs D with more than p
automorphisms and extract non-isomorphic designs among them. For the second
and third steps of this process, we proceed as in [8].

3. 4-(15,5,2) designs

In this section we find all 4-(15, 5, 2) designs with an automorphism of prime
order p, 7 ≤ p ≤ 13. Let D be such a design on the point set V = {1, . . . , 15}
with π as an automorphism. We say an automorphism is of type pr if it consists
exactly of r cycles of length p. Clearly, there exists no 4-(15, 5, 2) design with an
automorphism of type 111 or 71. Hence, we consider the types 131 and 72.

For the type 131, let π = (3 4 · · · 15). We employ the algorithm described in
the previous sections to get all 19 extensions of the derived designs (with respect
to the point sets {1, 2} and {1}). Since all of these solutions have exactly 13 auto-
morphisms, they are non-isomorphic:
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Theorem 1. There exist exactly 19 non-isomorphic 4-(15, 5, 2) designs admit-
ting an automorphism of order 13. These designs have all exactly 13 automor-
phisms.

Now let π = σ1σ2, where σ1 = (2 3 · · · 8), and σ2 = (9 10 · · · 15). Here, we get
a large number of derived designs and hence we prefer to employ the properties of
the normalizers of < π > so that the normalizer isomorphism test can be applied
to reject partially-completed isomorphic solutions.

Let − = {Γi} be the set of orbits of the blocks of D1 under the action of < π1 >
(as defined in Lemma 1) and let −j = {Γi : there exists a block B ∈ Γi such that
|B ∩ point(σ1)| = j or |B ∩ point(σ2)| = j}, 2 ≤ j ≤ 4.

Clearly −j is a well defined subset of − and for any σ ∈ N(G1), σ(−j) = −j .
Let u1 be the vector representation of D1 and permute the rows of u1 so that
the orbits of −4, −3, and −2 appear one group after another. We solve the equa-
tions A14

3,4(G1)u1 = 2J and M14,7
3,4 (G1)u1 = 0 (where the columns of matrices are

permuted accordingly) to obtain all partial solutions of length |−4|, |−4| + |−3|,
|−|, respectively. We can employ the normalizers to reduce the number of solu-
tions at each step. Finally, 9048 3-(14, 4, 2) designs are produced. The equations
A15

4,5(G)D = 2J and M15,7
4,5 (G)D = 14J are then solved to determine possible ex-

tensions to 4-(15, 5, 2) designs. Applying necessary isomorphism tests described in
Section 2, one obtains:

Theorem 2. There exist exactly 575 non-isomorphic 4-(15, 5, 2) designs admit-
ting an automorphism of order 7. The number of automorphisms of 557 designs is
7 and 18 designs have 14 automorphisms.

Examples of designs with 7, 13 and 14 automorphisms are given in the Appendix.

Solving the equations A16
5,6(G)D′ = 2J and M16,8

5,6 (G)D′ = 0 shows that none of
the above designs extends to a 5-(16, 6, 2) design D′ . Therefore:

Theorem 3. There are no 5-(16, 6, 2) designs with an automorphism of order
7, 11, and 13.

Appendix

The orbit representations of some new 4-(15,5,2) designs are given below. The
point set is V = {1, . . . , 9, A, . . . , F}. Design #i (1 ≤ i ≤ 3) has Gi as the full
automorphism group where Gi are as follows:

G1 =< σ1 >, G2 =< σ2 >, G3 =< σ2, σ3 >,

σ1 = (3 · · · F ),

σ2 = (2 · · · 8)(9 · · · F ),

σ3 = (2 F )(3 9)(4 A)(5 B)(6 C)(7 D)(8 E).

Note that |G1| = 13, |G2| = 7, and |G3| = 14.
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Design #1.

12345 12359 1236A 1236B 1345A 13469 1346C 13478 1347B 1348D
134AE 134BE 13579 1358A 2345C 23468 2346E 2347C 2347E 2348A
2349B 2349D 234AD 2357A 34567 3457B 3458B 3458E 3459A 3459D
345CD 3467E 3468D 3469B 346AC 346BD 3479C 347AD 348AB 348CE
349CE 3579D

Design #2.

12345 12356 1239A 1239E 123AE 123BD 123BF 123CD 123CF 12469
1246A 1249F 124AC 124BD 124BE 124CD 1259A 1259D 125AB 125BF
125CE 125EF 129CE 12ADF 19ABC 19ACD 2345B 2346D 2346E 23479
2347D 2349F 234AB 234CE 234CF 23569 2357E 2357F 2359F 235AC
235AD 235BE 2369B 236AC 236AE 236BF 237AB 237AF 237BC 237CE
239BC 239CD 239DE 23ADF 23DEF 2469C 246AF 249AB 249AD 249DE
24AEF 24BCE 24BCF 24BDF 259AE 259BC 259CF 25ABF 25BCD 25DEF
29ABE 29ACF 29BDF 29BEF 2ABCD 2ABDE 2ACDE 2ACEF

Design #3.

12345 12356 1239B 1239D 123AD 123AE 123BF 123CE 123CF 12469
1246B 124AC 124AD 2345F 2346A 2346F 2347B 2347C 2349A 2349C
234BD 234DE 2356C 2357A 2357D 2359B 235AF 235BC 235DE 2369D
236BE 236CE 236DF 2379C 237AF 237BE 237EF 246BD 246CF
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