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Abstract

A set of well known necessary conditions for the existence of a
large set of t-designs, LS[N ](t, k, v), is N

∣∣∣(v−i
k−i

)
for i = 0, . . . , t.

We investigate the existence of large sets of size four. We
take advantages of the recursive and direct constructions to
show that the trivial necessary conditions are sufficient when
N = 4, t = 2, 3 and k ≤ 7.
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1 Introduction

Let t, k, v and λ be integers such that 0 < t ≤ k ≤ v and λ > 0. Let
X be a v-set and Pk(X) denote the set of all k-subsets of X. A t-
(v, k, λ) design is a pair (X,D) in which D is a collection of elements
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of Pk(X) (called blocks) such that every t-subset of X appears in
exactly λ blocks. Let N > 1. A large set of t-(v, k, λ) designs of size
N , denoted by LS[N ](t, k, v), is a set of N disjoint t-(v, k, λ) designs
(X,Di) such that {Di| 1 ≤ i ≤ N} is a partition of Pk(X). Note that
we have N =

(
v−t
k−t

)
/λ. A set of well known necessary conditions for

the existence of an LS[N ](t, k, v) is

N
∣∣∣(v − i

k − i

)
, 0 ≤ i ≤ t. (1.1)

The central question on large sets is the existence problem. This
question has been completely answered for large sets of 1-designs, of
triple systems, of 2-designs of size 2. Apart from these comprehensive
results, there are also some partial results. For a review of known
results we refer the reader to [10].
The methods of constructions of large sets can be divided into two
categories: Direct and recursive constructions. The large sets found
via the former methods are utilized as initial structures in the latter
methods and usually a combined usage of direct and recursive con-
structions can lead to the general existence results. This approach has
been successfully used in establishing many existence results for large
sets of t-designs of prime sizes (see [2, 10, 11, 14, 16]). In this paper,
we investigate the existence of large sets of size four. We show that
the trivial necessary conditions (1.1) are sufficient for N = 4, t = 2, 3
and k ≤ 7.

2 Recursive constructions

Many recursive constructions of large sets are obtained via the notion
of (N, t)-partitionable sets which was first introduced in [3]. This idea
is indeed a generalization of the notion of large sets, where we consider
t-balanced partition of a subset B of Pk(X) instead of the whole set
Pk(X). Let B1,B2 ⊆ Pk(X). We say that B1 and B2 are t-equivalent
if every t-subset of X appears in the same number of blocks of B1

and B2. If there exists a partition of B ⊆ Pk(X) into N mutually
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t-equivalent subsets, then B is called an (N, t)-partitionable set. Let
X1 and X2 be two disjoint sets and let Bi ⊆ Pki

(Xi) for i = 1, 2.
Then we define

B1 ∗ B2 = {B1 ∪B2| B1 ∈ B1, B2 ∈ B2}.

The following two lemmas concern (N, t)-partitionable sets. The first
one is rather trivial but the second one contains an unexpected result.

Lemma 2.1 [3] (i) t-equivalence implies i-equivalence for all 0 ≤
i ≤ t.
(ii) The union of disjoint (N, t)-partitionable sets is again an (N, t)-
partitionable set.

Lemma 2.2 [3] Let X1 and X2 be two disjoint sets and let Bi ⊆
Pki

(Xi) for i = 1, 2. Suppose that B1 is (N, t1)-partitionable. Then

(i) B1 ∗ B2 is (N, t1)-partitionable.
(ii) If B2 is (N, t2)-partitionable, then B1 ∗ B2 is (N, t1 + t2 + 1)-
partitionable.

In order to find an LS[N ](t, k, v) on a v-set X, we try to partition
Pk(X) in such a way that each part of the partition is an (N, t)-
partitionable set. If this is done, then by Lemma 2.1, Pk(X) will
be an (N, t)-partitionable set which means that we have obtained an
LS[N ](t, k, v). This general approach has been used to obtain great
numbers of recursive constructions. We illustrate the method by the
following two examples.

Theorem 2.1 [3] If there exist LS[N ](t, k, v) and LS[N ](t, k+1, v),
then there exists an LS[N ](t, k + 1, v + 1).

Proof Let X be a v-set and x 6∈ X. Consider the following parti-
tioning of Pk+1(X ∪ {x}):

B0 = Pk+1(X),
B1 = {{x}} ∗ Pk(X).
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By the assumption B0 is (N, t)-partitionable. Also Pk(X) is an (N, t)-
partitionable set by the assumption and therefore by Lemma 2.2, B1

is (N, t)-partitionable. Now the assertion follows from Lemma 2.1. �

Theorem 2.2 [3] If LS[N ](t, i, v) exist for all t+1 ≤ i ≤ k and an
LS[N ](t, k, u) also exists, then an LS[N ](t, k, u + v − t) exists.

Proof Let X = {1, 2, . . . , u + v− t} and also for 1 ≤ j ≤ u + v− t,
let Xj = {1, 2, . . . , j} and Yj = X \Xj . For 0 ≤ i ≤ k, define

Bi = Pk−i(Xu−i) ∗ Pi(Yu−i+1).

Then it can be shown that Bi provide a partitioning of Pk(X).
By Lemma 2.1, it suffices to show that each Bi is (N, t)-partitionable.
Let 1 ≤ i ≤ t. Since there exists an LS[N ](t, k, u), hence there
exists an LS[N ](t − i, k − i, u − i). This means that Pk−i(Xu−i) is
(N, t− i)-partitionable. On the other hand from LS[N ](t, t+1, v) we
find LS[N ](i− 1, i, v − t− 1 + i). Therefore Pi(Yu−i+1) is (N, i− 1)-
partitionable and so from Lemma 2.2 it turns out that Bi is an (N, t)-
partitionable set. Now let t + 1 ≤ i ≤ k. From the assumption and
Theorem 2.1, it is seen that there exists an LS[N ](t, i, v − t− 1 + i).
Hence Pi(Yu−i+1) is (N, t)-partitionable and so is Bi. Finally, we note
that B0 is (N, t)-partitionable by the assumption. �

The following corollary is a useful application of Theorems 2.1 and
2.2. We will use this recursive theorem later on to obtain new results
on large sets of size 4.

Corollary 2.1 If LS[N ](t, i, v) exist for all t + 1 ≤ i ≤ k, then
LS[N ](t, i, l(v− t)+ j) exist for all l ≥ 1, t+1 ≤ i ≤ k and t ≤ j < i.

3 Direct constructions

The most common direct method for constructing t-designs and large
sets is based on group actions. In this method one tries to find designs
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using prescribed automorphism groups. The main point is that the
block sets of such designs must be a union of some orbits of the
prescribed group on all those subsets of the point set which are of the
same size. This method was formulated by Kramer and Mesner in
[12] as a matrix equation. Formally, let G be a permutation group on
a set X of size v and let t and k be integers such that 0 < t ≤ k ≤ v.
Let T1, T2, . . . , Ts and K1,K2, . . . ,Kr be the orbits under the induced
action of G on t-subsets and k-subsets of X, respectively. Denote by
Av

tk(G) = (aij) the s× r matrix, where aij is the number of k-subsets
in the orbit Kj containing a representative t-subset in the orbit of
Ti. By [12], this matrix is well defined and a t-(v, k, λ) design with
automorphism group G exists if and only if there is a (0, 1)-vector u
satisfying the equation Av

tk(G)u = λJ , where J is the all one vector.
Clearly, one may also adapt the same method for finding large sets
(see [14]). We pick up one from the set of solutions of u and remove
the corresponding columns from Av

tk(G). The resulting matrix A′v
tk(G)

is used in a similar way to Av
tk(G) to find designs via the equation

A′v
tk(G)u′ = λJ . We repeat the procedure until all orbits on k-subsets

are used or no design is obtained in some step. In the former case we
have a large set and in the latter we should backtrack and try another
solution from an earlier step. For practical purposes this algorithm
can be modified in order to search for large sets in a randomized
manner.

Many designs and large sets have been found by this approach com-
putationally and theoretically (for theoretical results, see for example
[4, 5, 7, 8, 9, 14, 15]). A great amount of work has been done to solve
the matrix equation via computational algorithms. The most natural
method to solve such systems is a backtracking algorithm widely used
by many authors. There is a different approach which uses lattice
base reduction by the LLL-algorithm to obtain a basis for the set of
solutions which contains short vectors and then applies a backtrack-
ing algorithm to find (0, 1) solutions. The use of LLL-algorithm for
finding t-designs was first introduced by Kreher and Radziszowski in
[13] and the above sketchy presentation of an improved version is due
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to Wassermann [17]. This method is the basis of a computer program
named DISCRETA to construct t-designs with prescribed automor-
phism groups developed by Betten, Haberberger, Laue, Wassermann
at the University of Bayreuth. The program has the ability of ran-
dom search for large sets. We use this program to find some new
large sets in the subsequent sections.

4 Large sets of size four

In this section, we take advantage of the direct and recursive con-
structions to obtain some new results on large sets of size 4. The
following theorem is useful for identifying feasible parameters. Let m
and n be positive integers. We denote the quotient and the remainder
of division m by n by [m/n] and (m/n), respectively. Let N, t and k
be given. The set of all v which satisfy the necessary conditions (1.1)
is denoted by B[N ](t, k).

Theorem 4.1 [11] Let pα be a prime power. v ∈ B[pα](t, k) if and
only if there exist distinct positive integers `i (1 ≤ i ≤ α) such that
t ≤ (v/p`i) < (k/p`i).

Lemma 4.1 Let v > 7. Then
(i) v ∈ B[4](2, 3) if and only if v ≡ 2 (mod 8).
(ii) v ∈ B[4](2, 4) if and only if v ≡ 2, 3 (mod 16).
(iii) v ∈ B[4](2, 5) if and only if v ≡ 2, 3, 4 (mod 16).
(iv) v ∈ B[4](2, 6) if and only if v ≡ 2, 3, 4, 5 (mod 16).
(v) v ∈ B[4](2, 7) if and only if v ≡ 2, 3, 4, 5, 6, 10, 14 (mod 16).

Proof We prove (v). The proofs of the other cases are similar.
Let v ∈ B[4](2, 7). Then by Theorem 4.1, there are distinct integers
0 < z1 < z2 such that 2 ≤ (v/2zi) < (7/2zi) for i = 1, 2. It is clear
that z1 ≥ 2. First let z1 = 2. Then v = 4v1 + 2 = v32z2 + j, where
j = 2, 6 and so v ≡ 2, 6, 10, 14 (mod 16). Now suppose that z1 > 2.
Then v = v12z2 + j, where j = 2, 3, 4, 5, 6 and so v ≡ 2, 3, 4, 5, 6
(mod 16). The converse is easily checked using Theorem 4.1. �
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Lemma 4.2 Let 4 ≤ k ≤ 7 and v > k. Then v ∈ B[4](3, k) if and
only if v ≡ 3, 4, . . . , k − 1 (mod 16).

Proof The proof is similar to that of Lemma 4.1. �

Theorem 4.2 Let t = 2, 3 and t < k ≤ 7. Then there exists an
LS[4](t, k, v) if and only if the necessary conditions (1.1) hold.

Proof By Corollary 2.1 and Lemmas 4.1 and 4.2, it suffices to es-
tablish the existence of the following large sets: LS[4](2, i, 18) and
LS[4](3, i, 19) for 4 ≤ i ≤ 7, LS[4](2, 3, 10), LS[4](2, 7, 10) and
LS[4](2, 7, 14). Regarding derived and complementary designs, we
only need to find LS[4](3, i, 19) for 4 ≤ i ≤ 7, LS[4](2, 3, 10) and
LS[4](2, 7, 14). These large sets are constructed in the next section.
�

We conjecture that for all feasible values of k and v, LS[4](2, k, v)
and LS[4](3, k, v) exist. To settle this conjecture, one should first
determine the parameters of the so-called root cases, i. e. large sets
which can not be obtained via the known recursive constructions. We
think that this part can be resolved through Theorem 4.1. The next
part is to find a way of construction of root cases. This part needs a
theoretical approach since the computer search is obviously applicable
for only a few sets of small parameters. One possible approach may
be similar to that one used by Ajoodani in [1] to construct root cases
of large sets of 2-designs of size 2 through partitionable sets. We also
note that Ajoodani’s construction is very complicated and it will be
a hard task to extend it to large sets of size 4.

5 Root cases

The recursive constructions are based on the following large sets that
are constructed using DISCRETA. We need large sets LS[4](3, i, 19)
for 4 ≤ i ≤ 7, LS[4](2, 3, 10) and LS[4](2, 7, 14). Note that an
LS[4](2, 3, 10) is known [6]. For LS[4](3, i, 19) (4 ≤ i ≤ 7), we found
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that the prescribed group D17 + +, that is the dihedral group on 17
points with two fixed points added, acts as a group of automorphisms
of each of 4 disjoint designs.
In the case of LS[4](3, 4, 19), a slightly larger group could be taken:
The semidirect product C17 o C4, of C17 with its group of automor-
phisms of order 4 in its natural action on C17. The Kramer-Mesner
matrix in this case is of size 21× 72. The disjoint designs were found
by iteratively selecting at random one solution of a 3-design with the
parameters needed and deleting the corresponding columns from the
Kramer-Mesner matrix. This procedure is iterated until a large set
is found or there is no solution. In general, several runs are needed
to find a large set. Since the random number generator is based on
tables, the solutions can be reproduced by starting the program with
identical input again.
The group C17 o C4 of order 68 is given by the following generators:

(0)(1)(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18),

(0)(1)(2)(3, 15, 18, 6)(4, 11, 17, 10)(5, 7, 16, 14)(8, 12, 13, 9).

The corresponding orbits (in order similar to the order of columns of
the Kramer-Mesner matrix) are represented by the following sets. In
each case the subscript gives the size of the stabilizer of the set.

{0, 1, 2, 3}2, {0, 1, 2, 4}2, {0, 1, 2, 5}2, {0, 1, 2, 8}2, {0, 2, 3, 4}2,

{0, 2, 3, 5}1, {0, 2, 3, 6}1, {0, 2, 3, 8}1, {0, 2, 3, 9}1, {0, 2, 3, 10}1,

{0, 2, 3, 11}2, {0, 2, 4, 7}1, {0, 2, 4, 9}1, {0, 2, 4, 10}1, {0, 2, 5, 8}2,

{0, 2, 5, 12}2, {1, 2, 3, 4}2, {1, 2, 3, 5}1, {1, 2, 3, 6}1, {1, 2, 3, 8}1,

{1, 2, 3, 9}1, {1, 2, 3, 10}1, {1, 2, 3, 11}2, {1, 2, 4, 7}1, {1, 2, 4, 9}1,

{1, 2, 4, 10}1, {1, 2, 5, 8}2, {1, 2, 5, 12}2, {2, 3, 4, 5}2, {2, 3, 4, 6}1,

{2, 3, 4, 7}1, {2, 3, 4, 8}1, {2, 3, 4, 9}1, {2, 3, 4, 10}1, {2, 3, 4, 11}1,

{2, 3, 5, 6}2, {2, 3, 5, 7}1, {2, 3, 5, 8}1, {2, 3, 5, 9}1, {2, 3, 5, 10}1
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{2, 3, 5, 11}1, {2, 3, 5, 12}1, {2, 3, 5, 13}1, {2, 3, 5, 14}1, {2, 3, 5, 15}1,

{2, 3, 5, 16}1, {2, 3, 5, 17}2, {2, 3, 6, 7}4, {2, 3, 6, 8}1, {2, 3, 6, 9}1,

{2, 3, 6, 12}1, {2, 3, 6, 13}1, {2, 3, 6, 16}2, {2, 3, 8, 9}2, {2, 3, 8, 10}1,

{2, 3, 8, 11}1, {2, 3, 8, 13}1, {2, 3, 8, 14}2, {2, 3, 9, 10}2, {2, 3, 9, 11}1,

{2, 3, 9, 12}1, {2, 3, 9, 13}4, {2, 3, 10, 11}2, {2, 3, 10, 12}2, {2, 4, 7, 9}2,

{2, 4, 7, 10}1, {2, 4, 7, 13}1, {2, 4, 7, 14}1, {2, 4, 7, 16}4, {2, 4, 9, 11}2,

{2, 4, 9, 14}2, {2, 4, 10, 12}4.

The Kramer-Mesner matrix A19
3,4 is as follows.

444400000000000000000000000000000000000000000000000000000000000000000000

100022422210000000000000000000000000000000000000000000000000000000000000

010012000222240000000000000000000000000000000000000000000000000000000000

001002220004202100000000000000000000000000000000000000000000000000000000

000100024200221200000000000000000000000000000000000000000000000000000000

100000000000000022422210000000000000000000000000000000000000000000000000

010000000000000012000222240000000000000000000000000000000000000000000000

001000000000000002220004202100000000000000000000000000000000000000000000

000100000000000000024200221200000000000000000000000000000000000000000000

000010000000000010000000000022222220000000000000000000000000000000000000

000001000000000001000000000011000001111111111110000000000000000000000000

000000100000000000100000000001210001100000001101111110000000000000000000

000000010000000000010000000000011000011000011000110011111100000000000000

000000001000000000001000000000001100001000100000011201001011110000000000

000000000100000000000100000000010110001101000100101000100010101100000000

000000000010000000000010000002000020200020000000000000020002002000000000

000000000001000000000001000000100000110100010010100000010000000012111000

000000000000100000000000100000001000000110101000001000110000100010110110

000000000000010000000000010000000110000011110000000000100002000101100101

000000000000001000000000001000000000020000000200020000002000000002020020

000000000000000100000000000100000000000002000000000200002200200000220000

The solution vectors for an LS[4](3,4,19) are as follows.

100000001011000000010010100000010101000010000110010000000110000000101100

001000100000010101000100000110000010000100001000000111010000010101000010

000101000100001000100000011001001000001000010001100000000001100010010000

010010010000100010001001000000100000110001100000001000101000001000000001

In the cases k = 5, 6, 7 and v = 19 with the group D17 + +, the
Kramer Mesner matrices are of size:
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• 41× 388 for k = 5,

• 41× 868 for k = 6,

• 41× 1580 for k = 7.

For LS[4](2, 7, 14) we found a solution using the group C13 oC4. The
matrices and the solutions are available from the authors. It should
be noted that a number of other groups like C19 did not lead to the
desired large sets.
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