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Abstract

A large set of t-(v, k, λ) designs of size N , denoted by LS[N ](t, k, v), is
a partition of all k-subsets of a v-set into N disjoint t-(v, k, λ) designs,
where N =

(
v−t
k−t

)
/λ. A set of trivial necessary conditions for the

existence of an LS[N ](t, k, v) is N
∣∣(v−i

k−i

)
for i = 0, . . . , t. In this paper

we extend some of the recursive methods for constructing large sets
of t-designs of prime sizes. By utilizing these methods we show that
for the construction of all possible large sets with the given N, t, and
k, it suffices to construct a finite number of large sets which we call
root cases. As a result, we show that the trivial necessary conditions
for the existence of LS[3](2, k, v) are sufficient for k ≤ 80.
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1. Introduction

A t-(v, k, λ) design is a collection of k-subsets of a given v-set such that every

t-subset of the v-set is exactly contained in λ elements of the collection.

A large set of t-(v, k, λ) designs of size N , denoted by LS[N ](t, k, v), is a

partition of all k-subsets of a given v-set into N disjoint t-(v, k, λ) designs,

where N =
(

v−t
k−t

)
/λ. A set of necessary conditions for the existence of an

LS[N ](t, k, v) is N
∣∣(v−i

k−i

)
for i = 0, . . . , t. In 1987, A. Hartman [9] conjectured

that these necessary conditions are sufficient for the existence of large sets of

size N = 2. Then, the first author proposed similar conjectures for N = 3, 4

[3]. These conjectures have not yet been settled and their proofs seem to

be far from reach. S. Ajoodani-Namini established the truth of Hartman’s

conjecture for t = 2 [1]. For t > 2, there exist some partial results. For

N = 3, the problem has been solved for t ≤ 4 and k ≤ 8 [19].

Along this line of thinking, some recursive constructions, with some merits

have been introduced. They have been instrumental in the production of

many infinite families of large sets. Most of those recursive constructions

are based on the notion of (N, t)-partitionable sets which was initiated in

[4]. This notion is in fact a generalization of large sets. Utilizing these

recursive constructions, one can reduce the proof of Hartman’s conjecture to

the question of existence of certain classes of large sets which we call root

cases.

In this paper, we develop some recursive constructions based on the notion

of (N, t)-partitionable sets for large sets of prime sizes. This allows us to

determine the root cases for large sets of prime sizes. Consequently, we show

that the necessary conditions for the existence of LS[3](2, k, v) are sufficient

for k ≤ 80.
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2. Definitions and Preliminaries

Let t, k, v and λ be integers such that 0 ≤ t ≤ k ≤ v and λ ≥ 1 and let X

be a v-set. We denote the set of all k-subsets of X by Pk(X). A t-(v, k, λ)

design (briefly a t-design) on X is a collection D of k-subsets of X (called

blocks) such that every t-subset of X is contained in exactly λ blocks of D.

Hereafter we assume that 0 ≤ t < k < v to avoid trivial cases. A t-design

with no repeated block is called simple t-design. Here we are only concerned

with simple t-designs. Pk(X) is trivially a t-(v, k,
(

v−t
k−t

)
) design which is called

the complete design. A simple counting argument shows that a t-(v, k, λ)

design is also an i-(v, k, λi) design, for 0 ≤ i ≤ t, where λi = λ
(

v−i
t−i

)
/
(

k−i
t−i

)
.

Hence, a set of necessary conditions for the existence of a t-(v, k, λ) design is

λ

(
v − i

t− i

)
≡ 0

(
mod

(
k − i

t− i

))
, 0 ≤ i ≤ t. (1)

Using
(

v−i
t−i

)(
v−t
k−t

)
=

(
v−i
k−i

)(
k−i
t−i

)
, the conditions (1) are equivalent to

λ

(
v − i

k − i

)
≡ 0

(
mod

(
v − t

k − t

))
, 0 ≤ i ≤ t. (2)

The least value of λ satisfying in (1) is denoted by λmin and any other feasible

λ is clearly an integer multiple of λmin. The λ of the complete design is

denoted by λmax.

Let D be a t-(v, k, λ) design on X and let x ∈ X. We define

Dd(x) = {B \ {x}| x ∈ B ∈ D},
Dr(x) = {B| x 6∈ B ∈ D},

Dc = {X \B| B ∈ D}.

One can easily see that Dd(x) and Dr(x) are (t − 1)-(v − 1, k − 1, λ) and

(t − 1)-(v − 1, k, λt−1 − λ) designs, respectively, and are called derived and

residual designs of D with respect to x. By the inclusion-exclusion principle,

it is also seen that for k ≤ v − t , Dc is a t-(v, v − k, λc) design, where

λc =
∑t

i=0(−1)t
(

t
i

)
λi and is called the complement of D.
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A large set of t-(v, k, λ) designs on X, denoted by LSλ(t, k, v) or

LS[N ](t, k, v), is a partition L of Pk(X) into N disjoint t-(v, k, λ) designs

Di, where N =
(

v−t
k−t

)
/λ. By convention, we always assume that N > 1.

By (2), we observe that a set of necessary conditions for the existence of an

LS[N ](t, k, v) is (
v − i

k − i

)
≡ 0 (mod N), 0 ≤ i ≤ t. (3)

The derived, residual, and complement large sets of L = {Di} are defined as

Ld(x) = {Di
d(x)}, Lr(x) = {Di

r(x)} and Lc = {Di
c} which are LS[N ](t−1, k−

1, v− 1), LS[N ](t− 1, k, v− 1) and LS[N ](t, v− k, v) large sets, respectively.

Note that we can obtain more large sets from a given large set which is shown

in the following modified form of a theorem in [2].

Theorem 1. If there exists an LS[N ](t, k, v), then there exist LS[N ](t −
i, k − j, v − l) for all 0 ≤ j ≤ l ≤ i ≤ t.

Proof. We prove the statement by induction on t. From the derived and

residual large sets LS[N ](t − 1, k − 1, v − 1) and LS[N ](t − 1, k, v − 1) and

by the induction hypothesis we obtain LS[N ](t− i, k− j, v− l) for l ≥ 1 and

0 ≤ j ≤ l ≤ i ≤ t. On the other hand LS[N ](t, k, v) is at the same time

LS[N ](i, k, v) for 0 ≤ i ≤ t. This completes the proof. �

The following well known and simple extension theorem yields immedi-

ately Theorem 3 which will be useful in our work.

Theorem 2 [4]. If there exist LS[N ](t, k, v) and LS[N ](t, k + 1, v), then

there exists LS[N ](t, k + 1, v + 1).

Theorem 3. If there exist LS[N ](t, k + i, v) for all 0 ≤ i ≤ l, then there

exist LS[N ](t, k + i, v + j) for all 0 ≤ j ≤ i ≤ l.
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Another useful extension theorem is the following theorem due to Alltop.

Theorem 4 [5]. Let t be even and N be arbitrary or let t be odd and N = 2.

If there exists LS[N ](t, k, 2k+1), then there exists LS[N ](t+1, k+1, 2k+2).

Notation. Let N, t, and k be given. The set of all v’s for which LS[N ](t, k, v)

exist is denoted by A[N ](t, k). The set of all v’s which satisfy the necessary

conditions (3) is denoted by B[N ](t, k).

3. (N, t)-Partitionable Sets

In this section we review the notion of (N, t)-partitionable sets which was

introduced in [4]. This idea is indeed a generalization of the notion of large

sets, where we consider a t-balanced partition of a subset B of Pk(X) instead

of the complete Pk(X). More precisely, let B1,B2 ⊆ Pk(X). We say that B1

and B2 are t-equivalent if every t-subset of X appears in the same number of

blocks of B1 and B2. If there exists a partition of B ⊆ Pk(X) into N mutually

t-equivalent subsets, then B is called an (N, t)-partitionable set. Let X1 and

X2 be two disjoint sets and let Bi ⊆ Pki
(Xi) for i = 1, 2. Then we define

B1 ∗ B2 = {B1 ∪B2| B1 ∈ B1, B2 ∈ B2}.

Lemma 1 [4]. (i) t-equivalence implies i-equivalence for all 0 ≤ i ≤ t.

(ii) The union of disjoint (N, t)-partitionable sets is again an (N, t)-partitionable

set.

Lemma 2 [4]. Let X1 and X2 be two disjoint sets and let Bi ⊆ Pki
(Xi) for

i = 1, 2. Suppose that B1 is (N, t1)-partitionable. Then

(i) B1 ∗ B2 is (N, t1)-partitionable.
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(ii) If B2 is (N, t2)-partitionable, then B1∗B2 is (N, t1+t2+1)-partitionable.

By Lemma 1(ii), if we are able to partition Pk(X) into disjoint (N, t)-

partitionable sets, then we obtain a large set. This technique in combination

with Lemma 2 provides a general approach for recursive and direct construc-

tions of large sets. We first outline the approach by a simple example.

Example. Construction of an LS[2](2, 3, 10) from an LS[2](2, 3, 6). Let X

be a 10-set and consider the following partition of P3(X):

B1 = P3({1, . . . , 6}),
B2 = P2({1, . . . , 5}) ∗ P1({7, . . . , 10}),
B3 = P1({1, . . . , 4}) ∗ P2({6, . . . , 10}),
B4 = P3({5, . . . , 10}).

B1 and B4 are (2,2)-partitionable sets by the assumption. By Theorem 1,

there exist LS[2](1, 2, 5) and LS[2](0, 1, 4). Therefore B2 and B3 are (2,2)-

partitionable sets by Lemma 2. Now Lemma 1 shows that P3(X) is (2,2)-

partitionable set, i. e. LS[2](2, 3, 10) is constructed.

The general form of the specific partition of Pk(X) which appeared in the

example above is as follows.

Lemma 3. Let X = {1, . . . , u + v + 1} and let Xj = {1, . . . , j} and Yj =

X \Xj for j = 1, . . . , u + v + 1. Assume that

Bi = Pk−i(Xu−i) ∗ Pi(Yu−i+1), 0 ≤ i ≤ k.

Then the sets Bi partition Pk(X).

We review the important recursive constructions obtained by the ap-

proach of (N, t)-partitionable sets in the following theorems. Let p be a

prime number.
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Theorem 5 [4]. If LS[N ](t, i, v + i) exist for all t + 1 ≤ i ≤ k and

LS[N ](t, k, u) also exists, then LS[N ](t, k, u + l(v + 1)) exist for all l ≥ 1.

Theorem 6 [4]. If LS[N ](t, t + 1, v + t) exists, then LS[N ](t, t + 1, lv + t)

exist for all l ≥ 1.

Theorem 7 [2, 19]. If LS[p](t, k, v − 1) exists, then LS[p](t, pk + i, pv + j)

exist for all −p ≤ j < i ≤ p− 1.

Theorem 8 [2]. If LS[p](t, k, v − 1) exists, then LS[p](t + 1, pk + i, pv + j)

exist for all 0 ≤ j < i ≤ p− 1.

These theorems clearly have nice applications. Many infinite families of

large sets can be constructed by means of these theorems. By Theorem 8,

one can easily show that a large set of t-designs and therefore a t-design exists

for every t, a result which was initially proved by Teirlinck [22] by a different

method. As far as we know, Theorems 7 and 8 are the only known extension

theorems which impose no additional conditions on the parameters.

4. Necessary Conditions

In this section, we present an alternative description of B[N ](t, k) when N

is a prime power, which we find useful in the subsequent section. We also

note that it can be used for arbitrary N as well, because of the factorization

of N into prime powers. Let m and n be positive integers. We denote the

quotient and remainder of division m by n by [m/n] and (m/n), respectively.

Let p be a prime number. It is well known that the largest integer α such

that pα|m! is equal to
∑

i≥1[m/pi]. We denote the largest value α such that
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pα|
(

m
n

)
by (m,n)p. Therefore we have

(m,n)p =
∑
i≥1

[
m

pi

]
−

[
n

pi

]
−

[
m− n

pi

]
.

Note that one can evaluate the expression [m/pi] − [n/pi] − [(m − n)/pi] in

the following way.

[
m

pi

]
−

[
n

pi

]
−

[
m− n

pi

]
=

{
1 if

(
m
pi

)
<

(
n
pi

)
,

0 otherwise.
(4)

We now state the main theorem.

Theorem 9. v ∈ B[pα](t, k) if and only if there exist distinct positive

integers `i for 1 ≤ i ≤ α such that t ≤ (v/p`i) < (k/p`i) for all i.

Proof. First assume that v ∈ B[pα](t, k). For 0 ≤ j ≤ t we have

(v − j, k − j)p =
∑
r≥1

[
v − j

pr

]
−

[
k − j

pr

]
−

[
v − k

pr

]
≥ α. (5)

Let `0 be the largest integer such that (v/p`0) ≥ t, but (v/p`0−1) < t. Let

j0 = (v/p`0−1) + 1, if (v/p`0−1) < (k/p`0−1) and j0 = (k/p`0−1), otherwise.

Therefore,

j0 ≤
(

k

pr

)
, r ≥ `0 − 1. (6)

By (4), we have

`0−1∑
r=1

[
v − j0

pr

]
−

[
k − j0

pr

]
−

[
v − k

pr

]
= 0. (7)

Now by (4)-(7), there exist distinct positive integers `i ≥ `0 for 1 ≤ i ≤ α

such that ((v − j0)/p
`i) < ((k − j0)/p

`i) or t ≤ (v/p`i) < (k/p`i) for all i.
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Now suppose that there exist distinct positive integers `i for 1 ≤ i ≤ α

such that t ≤ (v/p`i) < (k/p`i). Therefore, ((v − j)/p`i) < ((k − j)/p`i) for

all 0 ≤ j ≤ t and consequently (v− j, k− j)p ≥ α which in turn implies that

v ∈ B[pα](t, k). �

By Theorem 9, we are able to identify B[N ](t, t + 1) completely.

Lemma 4 [19]. Let
∏s

i=1 pαi
i be the prime power factorization of N . For

1 ≤ i ≤ s, suppose that psi−1
i ≤ t + 1 < psi

i . Then

B[N ](t, t + 1) =

{
v|v ≡ t (mod

s∏
i=1

pαi+si−1
i )

}
.

Proof. By Theorem 9, v ∈ B[pαi
i ](t, t + 1) if and if only v = nip

αi+si−1
i + t

for some ni. Therefore v ∈ B[N ](t, t+1) if and if only v = n
∏s

i=1 pαi+si−1
i + t

for some n. �

The following result is due to Teirlinck and we prove it by using Lemma

4.

Lemma 5 [20]. For k = t + 1, We have

λmin = gcd(v − t, lcm(1, . . . , t + 1)).

Proof. Let
∏s

i=1 pαi
i be the prime power factorization of v−t and let psi−1

i ≤
t + 1 < psi

i for 1 ≤ i ≤ s. If v ∈ B[N ](t, t + 1), then N is at most equal

to
∏s

i=1 pαi−si+1
i . Therefore λmin = λmax/N =

∏s
i=1 psi−1

i . This proves the

assertion. �

We bring this section to an end by presenting another useful application

of Theorem 9.
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Lemma 6. The minimal element of B[pα](t, k) is equal to vmin = ([k/p`+α−1]

+1)p`+α−1 + t in which ` is the smallest positive integer such that (k/p`) > t.

Proof. Let `1 = `, `2 = ` + 1, . . . , and `α = ` + α − 1. It is easy to check

that v = ([k/p`α ]+ 1)p`α + t ∈ B[pα](t, k). Now suppose that v′ ∈ B[pα](t, k).

By Theorem 9, there are distinct positive integers `′i, 1 ≤ i ≤ α, such that

t ≤ (v′/p`′
i) < (k/p`′

i). Clearly `′i ≥ `i for all i and so we have

v′ =

[
v′

p`′
α

]
p`′

α +

(
v′

p`′
α

)
≥

([
k

p`′
α

]
+ 1

)
p`′

α + t

≥
([

k

p`α

]
+ 1

)
p`α + t

= v.

Therefore, v = vmin and the proof is complete. �

5. Root Cases

In this section we extend recursive constructions of large sets of t-designs

of prime sizes by the notion of (N, t)-partitionable sets and the approach

described in Section 3. Theorem 10 shows that for given t and k there are

a finite number of certain large sets which suffice to produce large sets for

every possible order v. We call these large sets root cases. The root cases

of large sets of size 2 have already been determined by Ajoodani-Namini [1].

He has also constructed them for t = 2 and arbitrary k. Let p be a prime

and suppose that t and k are given.

Lemma 7. let ` be the smallest positive number such that (k/p`) > t.

Suppose that ([k′/p`] + 1)p` + t ∈ A[p](t, k′) for all k′ provided that t + 1 ≤
k′ ≤ k and (k′/p`) > t. Then np` + t ∈ A[p](t, k) for all n > [k/p`].
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Proof. The proof is by induction on k. We also proceed by induction on

n. For n = [k/p`] + 1, there is nothing to prove. So let n > [k/p`] + 1. Let

u = (n− 1)p` + t, v = p` − 1 and let

X = {1, . . . , u + v + 1},
Xj = {1, . . . , j},
Yj = X \Xj, 1 ≤ j ≤ u + v + 1,

Bi = Pk−i(Xu−i) ∗ Pi(Yu−i+1), 0 ≤ i ≤ k.

By Lemma 3, the sets Bi partition Pk(X). It is sufficient to show that

every Bi is (p, t)-partitionable. Then by Lemma 1, Pk(X) will be (p, t)-

partitionable and so np` + t ∈ A[p](t, k). By the induction hypothesis, B0 is

(p, t)-partitionable.

First let 1 ≤ i ≤ t. By Theorem 1, u − i ∈ A[p](t − i, k − i). Therefore,

Pk−i(Xu−i) is a (p, t − i)-partitionable set. By the assumption, we have

v+t+1 = p`+t ∈ A[p](t, t+1), which in turn implies that v+i ∈ A[p](i−1, i)

by Theorem 1. Since |Yu−i+1| = v + i, it is clear that Pi(Yu−i+1) is (p, i− 1)-

partitionable. Now by Lemma 2, Bi is (p, t)-partitionable.

Now let t + 1 ≤ i ≤ k. We first consider the case (i/p`) > t. By the

assumption, for t+1 ≤ j ≤ (i/p`) we have ([i/p`]+1)p`+t ∈ A[p](t, [i/p`]p`+

j). By Theorem 3, it is implied that v + i = ([i/p`] + 1)p` + (i/p`) − 1 ∈
A[p](t, i). Therefore, Pi(Yu−i+1) is (p, t)-partitionable and by Lemma 2, Bi

is also (p, t)-partitionable. Now consider the case 0 ≤ (i/p`) ≤ t. Then,

we have [k/p`] ≥ 1. For a moment suppose that (i/p`) 6= 0. Notice that

v + i+ t+1− (i/p`) = ([i/p`]+1)p` + t and i+ t+1− (i/p`) = [i/p`]p` + t+1.

By the assumption, we have v + i + t + 1− (i/p`) ∈ A[p](t, i + t + 1− (i/p`))

which by Theorem 1, results in v + i ∈ A[p]((i/p`)− 1, i). Hence Pi(Yu−i+1)

is (p, (i/p`)− 1)-partitionable . We now allow that (i/p`) = 0. Since u− i +

(i/p`) = (n− 1− [i/p`])p` + t and k− i + (i/p`) = ([k/p`]− [i/p`])p` + (k/p`),

therefore, by the induction on k we obtain that u− i+(i/p`) ∈ A[p](t, k− i+

(i/p`)). Eventually, Theorem 1 yields that u− i ∈ A[p](t− (i/p`), k− i) and

Pk−i(Xu−i) is (p, t− (i/p`))-partitionable and thus Bi is (p, t)-parititionable.
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This completes the proof. �

By Lemma 7, we can determine the root cases for given t and k.

Theorem 10. Let ` be the smallest positive integer such that (k/p`) >

t. Suppose that p` + t ∈ A[p](t, k′) for all k′ provided that t + 1 ≤ k′ ≤
min(k, (p` + t)/2). Then A[p](t, k) = B[p](t, k).

Proof. Throughout the proof, we assume that t+1 ≤ k′ ≤ k. If (p`+t)/2 <

k′ < p`, then p` + t−k′ < (p` + t)/2 and so p` + t ∈ A[p](t, p` + t−k′). Hence

by taking complement we obtain that p` + t ∈ A[p](t, k′). Using Lemma 7

for every k′ < p` and n ≥ 1 we have np` + t ∈ A[p](t, k′). Now let k′ > p`

and (k′/p`) > t. We have t < p` + t − (k′/p`) < p` < k and therefore,

([k′/p`] + 1)p` + t ∈ A[p](t, p` + t− (k′/p`)) which by taking complement one

can deduce that ([k′/p`] + 1)p` + t ∈ A[p](t, k′). By Lemma 7, for all k′ and

n > [k′/p`] we obtain that

np` + t ∈ A[p](t, k′). (8)

Let v ∈ B[p](t, k). By Theorem 9, there exists r ≥ ` such that t ≤
(v/pr) < (k/pr). By (8), we have

[v/pr]pr + t ∈ A[p](t, [k/pr] pr + j),

for (k/pr) − (v/pr) + t ≤ j ≤ (k/pr). Hence, by Theorem 3, v = [v/pr]pr +

(v/pr) ∈ A[p](t, k). �

An explicit form of Theorem 10 is presented in the following theorems.

Their proofs are similar and hence we only present the proof of Theorem 12.

Again suppose that t and k are given.

Theorem 11 [1]. Let 2s − 1 ≤ t < 2s+1 − 1. Suppose that for every

j and n such that 0 ≤ j ≤ [t/2] and t + 1 ≤ 2n + j ≤ k, there exists

12



LS[2](t, 2n +j, 2n+1 +t). Then A[2](t1, k1) = B[2](t1, k1) for all 2s−1 ≤ t1 ≤ t

and k1 ≤ k.

Theorem 12. Let p be an odd prime and let ps−1 ≤ t < ps+1−1. Suppose

that the following conditions hold:

(i) There exists LS[p](t, k′, ps+1 + t) for every t + 1 ≤ k′ ≤ min(k, (ps+1 +

t)/2).

(ii) There exists LS[p](t, ipn + j, pn+1 + t) for every i, j and n such that

0 ≤ j ≤ t, 1 ≤ i ≤ (p− 1)/2, ipn + j ≤ k and n > s.

Then A[p](t1, k1) = B[p](t1, k1) for all ps − 1 ≤ t1 ≤ t and k1 ≤ k.

Proof. We use an induction on t1 + k1. First let t1 = ps − 1 and k1 = ps.

From LS[p](t, t+1, ps+1 + t) and Theorem 1 we obtain LS[p](t1, k1, p
s+1 + t1).

Therefore we are done by Theorem 10. Now suppose that 2ps−1 < t1 +k1 ≤
t+k and t1 ≤ t. By Theorem 10, and the induction hypothesis, it is sufficient

to establish the existence of an LS[p](t1, k1, p
`1 +t1) in which `1 is the smallest

positive integer such that (k1/p
`1) > t1 and

k1 < (p`1 + t1)/2. (9)

By [k1/p
`1 ] = 0, we have `1 ≥ s+1. If `1 = s+1, then by (ii), we can obtain

LS[p](t1, k1, p
s+1 + t1) from LS[p](t, max(t + 1, k1), p

s+1 + t) using Theorem

1. If `1 > s + 1, then k1 ≥ ps+1. Let [k1/p
`1−1] = i and (k1/p

`1−1) = j.

Clearly j ≤ t1 ≤ t. By (9), we also obtain that i ≤ (p − 1)/2. Now

LS[p](t, ip`1−1 + j, p`1 + t), which exist by (ii), may be employed to obtain

LS[2](t1, ip
`1−1 + j, p`1 + t1) via Theorem 1. �
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6. Existence Results

In this section we use Theorems 11 and 12 to prove some existence results on

large sets of sizes 2, 3, 5, 7, 11 and 29. Many large sets with small parameters

have recently been constructed by Laue, Magliveras, and Wassermann [15]

among them there are some root cases. The result of Theorem 16 below is

new and the other results have already appeared in the literature. Theorems

17–21 appear in [15] without proofs. Perhaps the most celebrated result in

this context is the following theorem due to Ajoodani-Namini.

Theorem 13 [1]. A[2](2, k) = B[2](2, k).

Proof. By Theorem 11, we need the classes of large sets LS[2](2, 2n, 2n+1 +

2) and LS[2](2, 2n + 1, 2n+1 + 2). The second class is constructed by us-

ing Baranyai’s Theorem [6, 9] and Alltop’s Extension Theorem (Theorem

4). Ajoodani-Namini has also constructed the first class by use of (2, t)-

partitionable sets or trades in [1]. �

Theorem 14 [1, 4, 9, 14]. If 3 ≤ t ≤ 5 and k ≤ 15 or t = 6 and k = 7, 8, 9,

then A[2](t, k) = B[2](t, k).

Proof. First suppose that 3 ≤ t ≤ 6 and k ≤ 9. By Theorem 11, we need

the following large sets:

(i) LS[2](6, 7, 14), (ii) LS[2](6, 8, 22), (iii) LS[2](6, 9, 22).

These large sets exist by [13], [14] and [14], respectively. To complete the

proof we also need LS[2](5, 10, 21) which is known to exist by [14]. �

Theorem 15 [19]. If t ≤ 4 and k ≤ 8, then A[3](t, k) = B[3](t, k).
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Proof. Large sets LS[3](4, 5, 13) and LS[3](4, 6, 13) exist by [11] and [15],

respectively. Therefore, by Theorem 12, we are done. �

Theorem 16. If k ≤ 80, then A[3](2, k) = B[3](2, k).

Proof. By Theorems 12, we have to establish the existence of the following

large sets.

(i) LS[3](2, 9, 29), (ii) LS[3](2, 10, 29), (iii) LS[3](2, 11, 29),

(iv) LS[3](2, 27, 83), (v) LS[3](2, 28, 83), (vi) LS[3](2, 29, 83).

There exist LS[3](2, 9, 29) and LS[3](3, 11, 30) by [15]. By the last large set we

obtain LS[3](2, 10, 29), LS[3](2, 11, 29). Large sets (iv)-(vi) are constructed

by Theorem 6 in [15]. �

Theorem 17 [15]. If k ≤ 5, then A[5](2, k) = B[5](2, k) \ {7}.

Proof. By Theorem 9, we have

B[5](2, 3) = {5l + 2| l ≥ 1},
B[5](2, 4) = {5l + i| l ≥ 1, i = 2, 3}.

It is well known that LS[5](2, 3, 7) and LS[5](2, 4, 7) do not exist. Since

LS[5](2, 3, 12) and LS[5](2, 3, 17) exist [24], we obtain LS[5](2, 3, 5l+2) (l ≥ 2)

by Theorem 5.

There exist large sets LS[5](2, 4, 8) [18], LS[5](2, 4, 12) [12], LS[5](2, 4, 13)

[8] and LS[5](2, 4, 17) [23]. Therefore, by Theorem 5, we are able to construct

LS[5](2, 4, 5l + i) for all l ≥ 2 and i = 2, 3.

For k = 5 we use Theorem 10. It suffices to have LS[5](2, 3, 27),

LS[5](2, 4, 27) which exist by the paragraphs above and LS[5](2, 5, 27) which

exists by [15]. �
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Theorem 18 [15]. If k ≤ 5, then A[5](3, k) = B[5](3, k) \ {8}.

Proof. By Theorem 9, we have

B[5](3, 4) = {5l + 3| l ≥ 1}.

LS[5](3, 4, 8) does not exist because of non-existence of LS[5](2, 3, 7). Since

LS[5](3, 4, 13) [11] and LS[5](3, 4, 18) [23] exist, we obtain LS[5](3, 4, 5l +

3) (l ≥ 2) by Theorem 5.

For k = 5 we use Theorem 10. It suffices to have LS[5](3, 4, 28) which

exist by the paragraph above and LS[5](3, 5, 28) which exists by [15]. �

Theorem 19 [15]. If k ≤ 6, then A[7](2, k) = B[7](2, k).

Proof. By Theorem 12, we need LS[7](2, 3, 9) and LS[7](2, 4, 9) which exist

by [10] and [12], respectively. �

Theorem 20 [15]. If k ≤ 10, then A[11](2, k) = B[11](2, k).

Proof. By Theorem 12, we need LS[11](2, 3, 13), LS[11](2, 4, 13), LS[11](2, 5, 13)

and LS[11](2, 6, 13) which exist by [17], [8], [7] and [7], respectively. �

Theorem 21 [15]. If k ≤ 5, then A[29](2, k) = B[29](2, k).

Proof. By Theorem 12, we need LS[29](2, 3, 31), LS[29](2, 4, 31) and LS[29](2, 5, 31)

which exist by [17], [15] and [15], respectively. �

An almost comprehensive table of small large sets for v ≤ 18 is given in

[7]. We present a resume of known results on infinite cases in Table I.
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Table I

N t k v Ref.

∗ 1 ∗ ∗ [6, 9]

∗ 2 3 6= 7 [16, 17, 21]

2 2 ∗ ∗ [1]

2 ≤ 5 ≤ 16 ∗ [1, 4, 9, 14]

2 6 7, 8, 9 ∗ [1, 14]

3 2 ≤ 80 ∗ This paper

3 ≤ 4 ≤ 8 ∗ [19]

5 2 ≤ 5 6= 7 [15]

5 3 ≤ 5 6= 8 [15]

7 2 ≤ 6 ∗ [15]

11 2 ≤ 10 ∗ [15]

29 2 ≤ 5 ∗ [15]

∗ All feasible values.
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