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Abstract

In this paper, we determine the spectrum (the set of all possible volumes) of simple T(2, 3, v)
trades for any even foundation size v.
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1 Introduction

The determination of the set of all possible volumes of T(t, k, v) trades, the spectrum, has been
studied by different authors. The spectrum of a trade can be considered for a fixed (varying)
foundation size of trades. Trades also could be simple or with repeated blocks. To review the
background of the subject, the reader is referred to [2, 9] and the references therein.

The spectrum of T(2, 3, v) trades with repeated blocks has been dealt with in [7]. The aim
of this paper is to consider the spectrum of simple T(2, 3, v) trades with given foundation size.
The spectrum of Steiner T(2, 3, v) trades of a fixed foundation size is given in [3]. For a given
foundation size v, this only constitutes about v2/v3 = 1/v of the whole case and therefore a
large part of the spectrum remains unattained. In this paper we provide the answer for v even.
The main tool achieving this is the product of trades. To be more specific, we first determine
the spectrum of T(1, 2, v) trades. Then these trades are extended to T(2, 3, v) trades via an
extension theorem which is provided by the notion of products of trades.

1This research was supported in part by a grant from IPM.
2Corresponding author, email: rezagbk@ipm.ir.
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2 Definitions and Preliminaries

Let v, k and t be integers such that v ≥ k ≥ t ≥ 0 and let X be a v-set. A T (t, k, v) trade T on
X is a set of two disjoint collections T+ and T− of k-subsets of X (called blocks) such that for
every t-subset A of X, the number of occurrences of A in T+ and T− are equal. The foundation
of T is the set of elements of X covered by T+ (T−) and is denoted by found(T ). The number
of blocks in T+ (T−) is called the volume of T denoted by vol(T ). If there is no repeated block
in T+ (T−), then T is said to be simple. Here, we will be only concerned with simple trades. We
denote a simple T(2, 3, v) trade of foundation size u and volume s by T(s, u). By the notation
s = a1, a2, . . . , ar, we will mean that s can take any of the values of a1, a2, . . . , ar. The following
useful lemma is trivial.

Lemma 1 Let a1, . . . , ar, b, c be integers such that ai ≥ ai−1 and c−b ≥ ai−ai−1−1 for 2 ≤ i ≤
r. If s1 = a1, . . . , ar and s2 = b, b+1, . . . , c, then s1 +s2 = a1 +b, a1 +b+1, a1 +b+2, . . . , ar +c.

Let v ≥ 6 be even. We define m(v) and M(v) as

m(v) = 2dv/3e, (1)

and

M(v) =

{
v(v − 1)(v − 2)/12 if v ≡ 2 (mod 4),
v(v + 1)(v − 4)/12 if v ≡ 0 (mod 4).

(2)

We summarize some of the known results about the spectrum of T(2, 3, v) trades in the
following lemmas.

Lemma 2 [3, 6, 11] If there is a T(s, v), then m(v) ≤ s ≤ M(v). Moreover, there is a
T(m(v) + 1, v) if and only if v 6≡ 0 (mod 6).

Lemma 3 [5, 10] Let 6 ≤ v ≤ 8. Then, there is a T(s, v) if and only if one of the following
occurs:

(i) v = 6, s = 4, 6, 10;

(ii) v = 7, s = 6, 7, 9, 10, 12;

(iii) v = 8, s = 6, 7, . . . , 22, 24.

We now define the product of trades. This definition is a special case of a general notion
which was originally introduced in [1]. Let X1 and X2 be two disjoint sets of cardinalities v1

2



and v2, respectively. For B1 ⊆ Pk1(X1) and B2 ⊆ Pk2(X2), we let

B1 ∗ B2 = {A1 ∪A2|A1 ∈ B1, A2 ∈ B2}.

Let Ti = {T+
i , T−i } be a T(ti, ki, vi) trade of volume si on Xi for i = 1, 2. Then, a product of T1

and T2, denoted by T1 ∗ T2, is defined as

T1 ∗ T2 = {(T+
1 ∗ T+

2 ) ∪ (T−1 ∗ T−2 ), (T+
1 ∗ T−2 ) ∪ (T−1 ∗ T+

2 )}.

There is an important extension theorem concerning the products of trades which is presented
in the following theorem.

Theorem 1 [1] T1 ∗ T2 is a T(t1 + t2 + 1, k1 + k2, v1 + v2) trade of volume 2s1s2.

This theorem suggests that T(2, 3, v) trades may be constructed from T(1, 2, v) trades.
Therefore, it is natural to determine the possible volumes for T(1, 2, v) trades. Let

S(v) =





v(v − 2)/4 if v ≡ 0 (mod 2),
v(v − 1)/4 if v ≡ 1 (mod 4),
(v + 2)(v − 3)/4 if v ≡ 3 (mod 4).

Lemma 4 There is a T(1, 2, v) trade of volume s if and only if 2 ≤ s ≤ S(v), and s 6= S(v)− 1
in case v ≡ 1 (mod 4).

Proof It is straightforward to show that if there is a T(1, 2, v) trade of volume s, then 2 ≤
s ≤ S(v), and s 6= S(v) − 1 when v ≡ 1 (mod 4). The proof of existence is by induction on v.
The assertion can easily be checked for v < 6. Hence, suppose that v ≥ 6. Let X = {x1, . . . , xv}
and Xi = {x1, . . . , xi} for 1 ≤ i ≤ v.

First suppose that v ≡ 0 (mod 2) or v ≡ 3 (mod 4). Let T1 = {{x1}, {x2}} and T2 be a
T(0, 1, v − 2) trade of volume s2 on X \X2. Then by Theorem 1, T1 ∗ T2 is a T(1, 2, v) trade of
volume 2s2. Let T3 be a T(1, 2, v−2) trade of volume s3 on X \X2. Then the union of T1∗T2 and
T3 gives a T(1, 2, v) trade of volume s = 2s2 +s3. If v ≡ 0 (mod 2), then s2 = 0, 1, . . . , (v−2)/2,
s3 = 2, 3, . . . , S(v − 2) and by Lemma 1, we obtain s = 2, 3, . . . , S(v). Now assume that v ≡ 3
(mod 4). We have s2 = 0, 1, . . . , (v−3)/2 and s3 = 2, 3, . . . , S(v−2)−2, S(v−2). By Lemma 1,
we obtain s = 2, 3, . . . , S(v)− 2, S(v). A trade of volume S(v)− 1 can easily be obtained from
a trade T of volume S(v) constructed as above. Without loss of generality, we can assume that
x1x3, x2x4 ∈ T+ and x3x4 ∈ T−. We remove x1x3 and x2x4 from T+ and x3x4 from T− and
add x1x2 to T+. Then we find a trade of the desired volume.

The case v ≡ 1 (mod 4) is dealt with in a similar way. We define trades Ti of volume si

for 1 ≤ i ≤ 4 as follows: Let T1 = {{x1, x2}, {x3, x4}} and T2 be a T(0, 1, v − 5) trade on

3



X \ X5. Then T1 ∗ T2 is a T(1, 2, v − 1) trade of volume 4s2. Let T3 and T4 be T(1, 2, 5) and
T(1, 2, v− 4) trades on X5 and X \X4, respectively. Then the union of T1 ∗T2, T3, and T4 gives
a T(1, 2, v) trade of volume s = 4s2 + s3 + s4. We have s2 = 0, 1, . . . , (v−5)/2, s3 = 0, 2, 3, 5 and
s4 = 2, 3, . . . , S(v− 4)− 2, S(v− 4). Hence, by Lemma 1, we obtain s = 2, 3, . . . , S(v)− 2, S(v),
as required. ¤

3 Nonexistence results

In this section, we show that some special volumes do not occur in the spectrum of T(2, 3, v)
trades.

Lemma 5 If v ≡ 0 (mod 4), then there is no T(M(v)− 1, v).

Proof Let X be a v-set and suppose that there exists a T(M(v) − 1, v) trade on X. Let
S = P3(X) \ (T+ ∪ T−). Then |S| = v + 2. Let rx be the number of occurrences of point x in
S. For each point x, rx is odd and at least 3. Therefore, there are at most three points x with
rx > 3. The number of occurrences of each pair in S is even, so is either 0 or 2. Let a be a
point such that ra = 3. Without loss of generality, we suppose that {abc, abd, acd} ⊆ S for some
points b, c, d. Assume that rb = 3. Then bcd ∈ S and so rb = rc = rd = 3. We collect all the
blocks of this type in S′. Then S \ S′ must contain 6 blocks on 4 points which is impossible. ¤

Lemma 6 If v ≡ 2 (mod 4), then there is no T(s, v) for s = M(v) − 5,M(v) − 3,M(v) −
2,M(v)− 1.

Proof Let X be a v-set and suppose that T = T(s, v) is a trade on X such that s ∈ {M(v)−
5,M(v)− 3,M(v)− 2,M(v)− 1}. Let S = P3(X) \ (T+ ∪ T−). Then |S| ∈ {2, 4, 6, 10}. Let rx

and rxy be the numbers of occurrences of point x and pair xy in S, respectively. Clearly, rx and
rxy are even and also if rx 6= 0, then rx ≥ 4. Hence, the number of points x such that rx 6= 0 is
at least 5. It yields that |S| > 6 and so |S| = 10. Since

∑
x∈X rx = 30, there must be a point a

such that ra = 6 or 10. But obviously ra = 10 is impossible. So ra = 6. Now we show that for
any pair xy, rxy ≤ 2. It is clear that rxy ≤ 4. Suppose that rxy = 4 and xyu, xyv, xyw, xyz ∈ S.
Note that a ∈ {x, y, u, v, w, z} (conversely, ru is odd, a contradiction). Assume that a = u and
let B ∈ S \ {xyu, xyv, xyw, xyz} such that u 6∈ B. Since rv, rw, rz, rx, ruv, ruw, ruz, and rux are
even, we must have v, w, z, x ∈ B, which is impossible. Similarly a 6= v, w, z. If a = x (or a = y),
then we have ry = 8 and consequently ru = rux + ruy − 1 which is not even. Therefore, rxy ≤ 2
and there are exactly 6 points x with rx = 4. Now consider the six pairs appeared in the blocks
containing a. At least two of them (like xy and xz) must appear in one of the four blocks which
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do not contain a. Note also that rx = 4 and if we suppose that the fourth block containing x is
xuv, then rxu = 1 which is a contradiction. This completes the proof. ¤

4 Existence results

In this section, we construct a T(s, v) for every possible volume s when v is even. Our method
for v ≡ 2 (mod 4) is similar to the construction of a T(M(v), v) trade in [1, 8]. The same
approach in combination with a construction method for a T(M(v), v) trade in [11] is used for
the case v ≡ 0 (mod 4).

Lemma 7 There is a T(s, 10) if and only if s = 8, 9, . . . , 54, 56, 60.

Proof If there is a T(s, 10), then by Lemmas 2 and 6, s = 8, 9, . . . , 54, 56, 60. Now we establish
the converse. Let X = {x1, . . . , x8} and x, y 6∈ X. Let T1 = {{x}, {y}} and let T2 be a T(1, 2, 8)
trade on X of volume s2. Then T1∗T2 is a T(2, 3, 10) trade of volume 2s2. By Lemma 4, we have
2s2 = 4, 6, 8, . . . , 24. Let T3 be a T(s3, 8) trade on X, where s3 = 6, 7, . . . , 22, 24 by Lemma 3.
T1 ∗T2 and T3 have no common blocks and so their union gives a T(s, 10) in which s = 2s2 + s3.
By Lemma 1, we obtain that s = 10, 11, . . . , 46, 48. A T(8, 10) is found from two block disjoint
T(4, 6). A T(9, 10) exists by Lemma 2. For s = 50, 52, 54, 56, 60, a T(s, 10) can be obtained by
the construction given in Lemma 8. Finally, via a simple computer program we find T(47, 10),
T(51, 10) and T(53, 10) (not presented here). ¤

Lemma 8 Let v ≡ 2 (mod 4). If m(v) ≤ s ≤ M(v) and s 6= m(v) + 1,M(v) − 5,M(v) −
3,M(v)− 2,M(v)− 1, then there is a T(s, v).

Proof We proceed by induction on v, knowing that the assertion holds for v = 6, 10 from
Lemmas 3 and 7. Let v > 10, X = {x1, . . . , xv}, and Xi = {x1, . . . , xi} for 1 ≤ i ≤ v. We
define trades Ti of volume si for 1 ≤ i ≤ 6 as follows: Let T1 = {{x1, x2}, {x3, x4}} and T2 be a
T(1, 2, v − 5) trade on X \X5. Then T1 ∗ T2 is a T(2, 3, v − 1) trade of volume 4s2. Let T3 be
a T(1, 2, 5) trade of volume 5 on X5 and T4 be a T(0, 1, v − 6) trade on X \X6. Then T3 ∗ T4

is a T(2, 3, v − 1) trade of volume 10s4. Finally, let T5 be a T(2, 3, 6) trade on X6 and T6 be a
T(s6, v − 4) trade on X \X4. T1 ∗ T2, T3 ∗ T4, T5, and T6 have no common blocks and so their
union gives a T(s, v) in which s = 4s2 + 10s4 + s5 + s6. By Lemma 4 and the hypothesis of
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induction, we have

s2 = 0, 2, 3, . . . , S(v − 5)− 2, S(v − 5);

4s2 = 0, 8, 12, . . . , 4S(v − 5)− 8, 4S(v − 5);

s4 = 0, 1, . . . , (v − 6)/2;

10s4 = 0, 10, . . . , 5(v − 6);

s5 = 4, 6, 10;

s6 = m(v − 4), m(v − 4) + 2,m(v − 4) + 3, . . . , M(v − 4)− 6,M(v − 4)− 4,M(v − 4).

Hence, by Lemma 1, we obtain

s = m(v − 4) + 4,m(v − 4) + 6,m(v − 4) + 7, . . . , M(v)− 6,M(v)− 4,M(v).

Now suppose that m(v) ≤ s ≤ m(v− 4)+5 and s 6= m(v)+1,m(v− 4)+4. If v ≡ 10 (mod 12),
then m(v) = m(v − 4) + 4 and there is nothing left. Otherwise, we need to find T(m(v), v) and
T(m(v)+3, v). Using suitable combinations of trades in Lemma 3, T(10, 14),T(13, 14), T(12, 18)
and T(15, 18) are easily constructible. For v > 18, noting that m(v) = m(v − 12) + 8, T(m(v −
12) + 8, v) and T(m(v − 12) + 11, v) are constructed from T(m(v − 12), v − 12) and T(m(v −
12) + 3, v − 12), respectively and T(8, 12) (see Lemma 3). ¤

Lemma 9 Let v ≡ 0 (mod 4). If m(v) ≤ s ≤ M(v) and s 6= m(v) + 1,M(v)− 1, then there is
a T(s, v).

Proof We proceed by induction on v. The assertion holds for v = 8 by Lemma 3. Let v > 8,
X = {x1, . . . , xv} and Xi = {x1, . . . , xi} for 1 ≤ i ≤ v. We define trades Ti of volume si for
1 ≤ i ≤ 6 as follows: Let T1 = {{x1, x2}, {x3, x4}} and T2 be a T(1, 2, v − 7) trade on X \X7.
Then T1 ∗ T2 is a T(2, 3, v − 3) trade of volume 4s2. Let T3 be a T(1, 2, 7) trade of volume 9 on
X7 such that x5x6, x6x7, x7x5 /∈ T3 and let T4 be a T(0, 1, v−8) trade on X \X8. Then T3 ∗T4 is
a T(2, 3, v− 1) trade of volume 18s4. Finally, let T5 be a T(2, 3, 8) trade on X8 (not necessarily
with foundation size 8) such that (P3(X4)∪P3(X8 \X4))∩ (T+

5 ∪ T−5 ) = ∅ (see [11]) and let T6

be a T(s6, v − 4) trade on X \X4. T1 ∗ T2, T3 ∗ T4, T5 and T6 have no common blocks and so
their union gives a T(s, v) in which s = 4s2 + 18s4 + s5 + s6. By Lemma 4 and the hypothesis
of induction, we have

s2 = 0, 2, 3, . . . , S(v − 7)− 2, S(v − 7);

4s2 = 0, 8, 12, . . . , 4S(v − 7)− 8, 4S(v − 7);

s4 = 0, 1, . . . , (v − 8)/2;

18s4 = 0, 18, . . . , 9(v − 8);

s5 = 4, 24;

s6 = m(v − 4),m(v − 4) + 2, m(v − 4) + 3, . . . , M(v − 4)− 2,M(v − 4).
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Now, by Lemma 1, we obtain

s = m(v − 4) + 4,m(v − 4) + 6,m(v − 4) + 7, . . . , M(v)− 2,M(v).

Now suppose that m(v) ≤ s ≤ m(v− 4) + 5 and s 6= m(v) + 1,m(v− 4) + 4. If v ≡ 4 (mod 12),
then m(v) = m(v − 4) + 4 and there is nothing left. Otherwise, we need to find T(m(v), v) and
T(m(v) + 3, v). Using suitable combinations of trades in Lemma 3, T(8, 12) and T(11, 12) are
easily constructible. For v ≥ 20, noting that m(v) = m(v − 12) + 8, T(m(v − 12) + 8, v) and
T(m(v − 12) + 11, v) are constructed from T(m(v − 12), v − 12) and T(m(v − 12) + 3, v − 12),
respectively and T(8, 12) (see Lemma 3). ¤

We summarize the results in the following theorem.

Theorem 2 Let v ≥ 6 be even and let m(v) and M(v) be as defined in (1) and (2).

(i) If v ≡ 0 (mod 4), then there is a T(s, v) if and only if

s = m(v),m(v) + 2,m(v) + 3, . . . , M(v)− 2, M(v)

and possibly s = m(v) + 1.

(ii) If v ≡ 2 (mod 4), then there is a T(s, v) if and only if

s = m(v),m(v) + 2,m(v) + 3, . . . , M(v)− 6,M(v)− 4, M(v)

and possibly s = m(v) + 1.

(iii)There is a T(m(v) + 1, v) if and only if v ≡ 2, 4 (mod 6).

Note Using the technique of products of trades described here and some messy arguments, we
have been able to determine the spectrum of trades with odd foundation size v not congruent
to 5 modulo 6. For v ≡ 5 (mod 6), about v/6 of volumes are undecided. We are hopeful that a
better method to tackle the remaining parts could be found in a not distanced future.
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