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1 Introduction

Let G be a simple graph of order n and the vertex set V (G). Let µ be an eigenvalue of
G of multiplicity m. An m-subset X of V (G) is called a star set for µ in G if µ is not an
eigenvalue of G \X. The induced subgraph H = G \X is said to be a star complement
for µ in G. Star sets exist for any eigenvalue in a graph and they are not necessarily
unique. For the background and results on star sets and star complements, one may
consult [8, 9, 11, 14].

The following theorem which establishes a relation between a graph and its substruc-
tures corresponding to an eigenvalue is the basis of the so called star complement technique.

Theorem 1 (The Reconstruction Theorem) Let G be a graph with adjacency matrix
(

AX Bt

B C

)
,

where AX is the adjacency matrix of the subgraph induced by a subset X of vertices. Then
X is a star set for µ in G if and only if µ is not an eigenvalue of C and µI − AX =
Bt(µI − C)−1B.

This theorem states that the triple (µ,B,C) determines AX uniquely. In other words, given
eigenvalue µ, a star complement H and H-neighborhoods of X, G is uniquely determined.
From the theorem, it is seen that for any two vertices u and v of X, we have

< bu,bv >= bt
u(µI − C)−1bv =





µ if u = v,

−1 if u ∼ v,

0 if u � v,

(1)

where bx is the column of B corresponding to a vertex x. It is well known that if µ 6= 0,−1,
then the H-neighborhoods of vertices of X are distinct and nonempty.

Let H be a graph of order t with no eigenvalue µ. The star complement technique is
a method for determining all graphs G prescribing H as a star complement for eigenvalue
µ. It is known that if µ 6= −1, 0, then |V (G)| ≤ (

t+1
2

)
(see [3]) and therefore there are only

finitely many such graphs G. Now we briefly review the star complement technique. We
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use the notation of Theorem 1. Given C (the adjacency matrix of H) with no eigenvalue
µ, one is interested in finding the solutions for B (note that by Theorem 1, AX will then
be determined uniquely). Hence, first of all one needs to find (0, 1) column vectors of
dimension t which are candidates for columns of B. In other words, we need to find all
possible extensions H + u of H by adding a new vertex u such that H + u has µ as an
eigenvalue. In order to do this, we identify all vectors b satisfying

< b,b >= µ,

and let them be the vertices of the compatibility graph G(H, µ). An edge is inserted
between b and b′ if and only if

< b,b′ >= 0,−1.

Now by Theorem 1, any clique in G(H, µ) determines the vertices of a star set X and
therefore a graph G having H as a star complement for eigenvalue µ. To describe all the
graphs with H as a star complement for µ, it suffices to determine the maximal graphs,
i.e. those graphs for which the corresponding clique in G(H,µ) is maximal, since any
graph with H as a star complement for µ is an induced subgraph of such a graph.

Two main problems arise in the context of star complement. One of these is the general
problem which is to find all maximal graphs having a given graph H as a star complement
for some eigenvalue. In other words, by the notation of Theorem 1, given C, we want
to find all solutions for µ, B,AX . The other problem is the restricted problem which is
about the determination of all maximal graphs prescribing a given graph H as a star
complement for a given eigenvalue µ. This means that given C and µ, we are interested
in finding all solutions for B and AX . These problems are interesting for some reasons
as is described in the following. Sometimes there is only a unique maximal graph and
hence that graph is characterized by a means of its star complement. Also the problems
usually build unexpected links to other areas of combinatorics such as extremal set theory
and t-designs. The general and restricted problems have been dealt with for some special
families of graphs such as complete graphs, complete bipartite graphs, stars, paths, cycles
and so on. A list of references includes [1, 2, 4, 5, 9, 10, 12, 13, 14, 16, 17].

In this paper, we consider the restricted problem for H = Kr,s + tK1 and µ = 1. Our
objective is to identify the maximal graphs as well as regular graphs which have H as a
star complement for eigenvalue 1. Some special cases of this problem have already been
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investigated: In [12] (see also [15, 16]), it is shown that the complement of the Clebsch
graph (srg(16, 5, 0, 2)) is the unique maximal graph which has K1,5 as a star complement.
For H = K1,9, it is known that there are exactly 15 maximal graphs [16] and for H = K1,10,
there is a unique maximal graph [12]. We also know that the complement of the Schläfli
graph is the unique maximal graph which admits H = K2,5 as a star complement [12, 13].
Finally, for H = K1,s + 2K1, the maximal graphs are found in [10]. We note that in [12]
(see also [13]) some general observations on the general problem for H = Kr,s + tK1 and
arbitrary µ are given.

The following lemma provides useful information on the location of an eigenvalue of a
graph. For a graph G of order n we denote the ith largest eigenvalue of G by λi(G) and
we also let λ0(G) = ∞ and λn+1(G) = −∞.

Lemma 1 Given a graph G of order n with eigenvalue µ of multiplicity m ≥ 1, let H be
a star complement for µ in G. Let λr+1(H) < µ < λr(H) for some 0 ≤ r ≤ n−m. Then
λr+1(G) = · · · = λr+m(G) = µ.

Proof. By interlacing, we have the inequalities

λr+m(G) ≤ λr(H) ≤ λr(G),

λr+1+m(G) ≤ λr+1(H) ≤ λr+1(G),

which yield λr+m+1(G) < µ < λr(G). Since G has eigenvalue µ of multiplicity m, the
assertion follows. ¤

We introduce some notation which will be used throughout the paper. We assume that
H = Kr,s + tK1 is a star complement for eigenvalue µ = 1 in G. Note that by Lemma
1, G has 1 as the second largest eigenvalue. With no loss of generality, we suppose that
1 ≤ r ≤ s, (r, s) 6= (1, 1). Let also W = {w1, w2, . . . , wt} denote the set of isolated vertices
in H and let U = {u1, u2, . . . , ur} and V = {v1, v2, . . . , vs} be the two subsets of vertices of
H with all edges of H between U and V . The star set corresponding to H and µ is denoted
by X. Let H(a, b, c) be a graph obtained from H by introducing a new vertex and joining
it to a vertices of U , b vertices of V and c vertices of W . The (0,1) column vector bu
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denotes the neighborhood of u ∈ X in H. Let H + u = H(a, b, c) and H + v = H(α, β, γ).
Then it is an easy task to show that

(1− rs) < bu,bv >= (1− rs)ρ + a(β + αs) + b(α + βr), (2)

where ρ is the number of common neighbors of u and v in H (see [12, Eq. (7.4)]).

2 Extension by a vertex

The first step in the star complement technique is to find all possible extensions of a star
complement by adding a new vertex. We proceed to determine all possible graphs H + u

by adding a vertex u such that H + u has µ as an eigenvalue.

Let H + u = H(a, b, c). Using (1) and (2), we find that

1− rs = (a + b + c)(1− rs) + 2ab + a2s + b2r. (3)

Assuming r = a + x and s = b + y, (3) is converted to

ab(c− 3) + (b + c− 1)ay + (a + c− 1)bx + (a + b + c− 1)(xy − 1) = 0. (4)

We make use of (4) to obtain the solutions of (3). The proofs of the next two lemmas are
straightforward.

Lemma 2 Let m ≥ n ≥ 1 be integers. If mn ≤ m + n, then (m,n) = (2, 2) or n = 1.

Lemma 3 Let m ≥ n ≥ q ≥ 1 be integers. Then the solutions of mnq = m + n + q + 2
are (m,n, q) ∈ {(2, 2, 2), (3, 3, 1), (5, 2, 1)}.

Lemma 4 Let c ≥ 3. Then the solutions of (3) are as follows.

r 3 2 2 1 1 1 1 1

s 3 5 2 5 3 2 2 2

a 3 2 2 1 1 1 1 0

b 3 5 2 5 3 2 1 2

c 4 4 5 5 6 8 4 3
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Proof. First suppose that xy 6= 0. Since c ≥ 3, all sentences in the left hand side of (4)
are nonnegative and thus they all must be 0. Consequently, we obtain that a = b = 0 and
x = y = 1, which is not acceptable. So xy = 0. Assume that x 6= 0 and y = 0. Then (4)
yields ab(c − 3) + (a + c − 1)bx = a + b + c − 1. By Lemma 2, b = 1, 2. If b = 2, then by
Lemma 2, x = 1, c = 3, a = 0 and we have the solution (r, s, a, b, c) = (1, 2, 0, 2, 3). If b = 1,
then x = 1, c = 4, a = 1 and the solution (r, s, a, b, c) = (2, 1, 1, 1, 4) is obtained which is
not acceptable (since r ≤ s). The case x = 0 and y 6= 0 gives the same solutions with the
roles of r and s interchanged. Therefore in this case we have the solution (r, s, a, b, c) =
(1, 2, 1, 1, 4). Finally, let x = y = 0. Then we have ab(c− 3) = a + b + c− 1 and hence by
Lemma 3, (a, b, c) = (2, 2, 5), (1, 3, 6), (3, 3, 4), (1, 2, 8), (1, 5, 5), (2, 5, 4). ¤

In the next lemmas we consider the remaining cases c = 0, 1, 2.

Lemma 5 Let c = 0. Then the solutions of (3) are as follows.

r 5 3 3 2 2 2 1 1 1 1

s 10 11 3 5 5 13 5 9 10 10

a 5 3 1 0 1 2 0 1 1 1

b 6 7 1 3 1 9 2 3 2 5

Proof. For c = 0, the equation (4) becomes

abx + aby + (a + b− 1)(xy − 1) = 3ab + ay + bx. (5)

With no loss of generality we assume that x ≤ y (if we find a solution such that
r > s, we should interchange the roles of r and s). Note that y 6= 0. First suppose
that x = 0. Then (b − 1)ay = a + b − 1 + 3ab. Since r ≥ 1, we have a ≥ 1. Also
b ≥ 2, since otherwise we get y = 0 or a = 0, a contradiction. We now conclude that
4a is congruent to 0 modulo b − 1 and b − 1 is congruent to 0 modulo a. Therefore,
b − 1 = a, 2a or 4a. First let b − 1 = a. Then ay = 5 + 3a which gives the solutions
(r, s, a, b) = (1, 10, 1, 2), (5, 10, 5, 6). Next let b−1 = 2a. Then ay = 3+3a which gives the
solutions (r, s, a, b) = (1, 9, 1, 3), (3, 11, 3, 7). Finally, let b−1 = 4a. Then from ay = 3a+2
we find the solutions (r, s, a, b) = (1, 10, 1, 5), (2, 13, 2, 9).
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Now we assume that x > 0. We claim that x > 2 is impossible. On the contrary,
suppose that x > 2. From (5), it can easily been seen that ab 6= 0. Since we have assumed
y ≥ x, (5) yields 3(ab− b) + 3(ab− a) + 9(a + b− 1) + 1 ≤ a + b + 3ab which in turn gives
3ab + 5a + 5b ≤ 8, a contradiction. Therefore, x ≤ 2. First let x = 1. Then (5) yields
(ab + b − 1)(y − 2) = a + 1. This gives y ≥ 3. Now a + 1 is congruent to 0 modulo y − 2
and y − 2 is congruent to 0 modulo a + 1. Therefore, y − 2 = a + 1 and so ab + b = 2
which gives the solutions (r, s, a, b) = (1, 5, 0, 2), (2, 5, 1, 1). Next let x = 2. From (5) we
find (ab+ a)y +(2b− 2)y +1 = a+ ab+3b. If b = 0, then (a− 2)y = a− 1 and we find the
solution (r, s, a, b) = (5, 2, 3, 0). If a = 0, then (2b− 2)y = 3b− 1 and we have the solution
(r, s, a, b) = (2, 5, 0, 3). Hence, let a, b 6= 0. Then we have ab+a+b ≤ 3 and so the solution
(r, s, a, b) = (3, 3, 1, 1) is obtained. ¤

Lemma 6 Let c = 1. Then the solutions of (3) are as follows:

(i) r, s arbitrary and a = b = 0.

(ii) (r, s, a, b) = (2, 5, 2, 2), (1, 5, 1, 1).

(iii) r, s arbitrary and a = r − 1, b = s− 1.

Proof. With c = 1 the equation (4) becomes

ab(x + y) + (a + b)xy = a + b + 2ab. (6)

If a, b = 0, then obviously x, y are arbitrary and hence (i) holds. So let a + b 6= 0. If
x = 0, then ab(y − 2) = a + b which means that a = b and so we find the solutions
(r, s, a, b) = (2, 5, 2, 2), (1, 5, 1, 1). For y = 0, the same solutions are found with the roles
of r and s interchanged. Now let xy 6= 0. We have x, y < 2, since otherwise from (6) we
have ab(2 + y) + 2(a + b)y ≤ a + b + 2ab which is a contradiction. Therefore, x = y = 1
and (iii) holds. ¤

Lemma 7 Let c = 2. Then in (3) we have r = a = 1 and b = s− 2.

Proof. Letting c = 2 in (4) we have

ab(x + y) + (a + b + 1)xy + ay + bx = a + b + 1 + ab. (7)
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If a, b = 0, then we find x = y = 1 and hence r = s = 1, a contradiction. So let a + b 6= 0.
It is seen from (7) that xy = 0. If x = 0, then (7) yields a(b + 1)(y − 1) = b + 1 and thus
a = 1 and y = 2. The case y = 0 is similar with the roles of r and s interchanged. ¤

We summarize the results of the previous lemmas in the following Theorem.

Theorem 2 The graph H(a, b, c) is of one of the following forms.

# H (a, b, c)

1 K1,2 + tK1 (0, 2, 3), (1, 1, 4), (1, 2, 8), (0, 0, 1), (0, 1, 1), (1, 0, 2)
2 K1,3 + tK1 (1, 3, 6), (0, 0, 1), (0, 2, 1), (1, 1, 2)
3 K1,5 + tK1 (0, 2, 0), (0, 0, 1), (1, 1, 1), (0, 4, 1), (1, 3, 2), (1, 5, 5)
4 K1,9 + tK1 (1, 3, 0), (0, 0, 1), (0, 8, 1), (1, 7, 2)
5 K1,10 + tK1 (1, 2, 0), (1, 5, 0), (0, 0, 1), (0, 9, 1), (1, 8, 2)
6 K2,2 + tK1 (2, 2, 5), (0, 0, 1), (1, 1, 1)
7 K2,5 + tK1 (1, 1, 0), (0, 3, 0), (0, 0, 1), (2, 2, 1), (1, 4, 1), (2, 5, 4)
8 K2,13 + tK1 (2, 9, 0), (0, 0, 1), (1, 12, 1)
9 K3,3 + tK1 (1, 1, 0), (0, 0, 1), (2, 2, 1), (3, 3, 4)

10 K3,11 + tK1 (3, 7, 0), (0, 0, 1), (2, 10, 1)
11 K5,10 + tK1 (5, 6, 0), (0, 0, 1), (4, 9, 1)
12 K1,s + tK1 (none of the above) (0, 0, 1), (0, s− 1, 1), (1, s− 2, 2)
13 Kr,s + tK1 (none of the above) (0, 0, 1), (r − 1, s− 1, 1)

3 Maximal graphs

When H is one of the cases #1 to #12 in Theorem 2, there are different types of vertices
in the star set which makes it a tedious task to find all maximal graphs with H as a
star complement. However, in the case #13 there are only two types of vertices and
it seems tractable. Hence, in this section we investigate the maximal extensions G of
H = Kr,s + tK1 when H is the case #13 in Theorem 2. Note that t ≥ 1 and there are two
types of vertices in the star set X. Let u ∈ X and H + u = H(a, b, c). We say that u is
of type 1 (2) if (a, b, c) = (0, 0, 1) ((a, b, c) = (r− 1, s− 1, 1)). Then (1) and (2) show that
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any vertex of type 1 lies in a component of G which is K2. We can ignore such vertices
for the following reason: If G is a maximal graph for H = Kr,s + tK1 containing r vertices
of type 1, then G′ obtained from G by removing r components K2 is a maximal graph for
H ′ = Kr,s + (t − r)K1. Therefore, we may assume that G has no vertices of type 1. We
index a vertex of type 2 by (i, j, k) if it is not adjacent (not adjacent, adjacent) to ui (vj ,
wk) in U (V , W ). Therefore, the vertices of the compatibility graph are indexed by the
triples (i, j, k), where 1 ≤ i ≤ r, 1 ≤ j ≤ s and 1 ≤ k ≤ t.

Let u, v ∈ X be two distinct vertices of type 2. Then by (2),

< bu,bv >= ρ− r − s + 2, (8)

where ρ denotes the number of common neighbors of u and v in H. Since < bu,bv >=
−1, 0, we conclude that at least one and at most two of U -, V - and W -neighborhoods of u

and v must coincide. Moreover, u is joined to v in G if and only they coincide for exactly
one of these neighborhoods. In the compatibility graph, (i1, j1, k1) is joined to (i2, j2, k2)
if and only if they coincide in at least one coordinate and at most two. We now find the
maximal cliques in the compatibility graph.

Theorem 3 A maximal clique in the compatibility graph, up to isomorphism, is of one of
the following forms:

(i) Ml = {(i1, i2, i3) | il = 1}, 1 ≤ l ≤ 3.

(ii) {(i1, i2, i3) | at least two of i1, i2, i3 are 1}, if t > 1.

(iii) {(1, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1)}, if t > 1.

Proof. Let M be a maximal clique. If t = 1, then obviously we have the case (i).
Therefore, let t > 1. First suppose that M has two vertices which have the same entries
in two coordinates. With no loss of generality, we let (1, 1, 1), (1, 1, 2) ∈ M . Then the
remaining vertices in M are of the form (1) (1, j, k) or (2) (i, 1, k). If all vertices are of
type (1) or all are of type (2), then we conclude that M is of the form (i). Otherwise, M is
of the form (ii). Now assume that no two vertices in M coincide in two coordinates. With
no loss of generality, let (1, 1, 1), (1, 2, 2) ∈ M . Then the remaining vertices in M are of
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the form (1) (1, j, k), (2) (i, 1, 2) or (3) (i, 2, 1) . If M has vertices of type (2) or (3), then
clearly M is of the from (iii). Otherwise, we find that M is not maximal, a contradiction.
¤

The theorem above along with the preceding paragraph describe all possible maximal
graphs G up to isomorphism.

4 Regular graphs

In this section we identify regular graphs which have H as a star complement for eigenvalue
1. Suppose that G is a k-regular extension of H with star set X. Let u ∈ X. Then it is
well known that < bu, j >= −1. Therefore, if H + u = H(a, b, c), then by (2), we have

a(s + 1) + b(r + 1) + (c + 1)(1− rs) = 0.

Using Theorem 2, we find the solutions of this equation. The results are given in the
following Theorem.

Theorem 4 For a regular extension G, the graph H(a, b, c) is of one of the following
forms.

# H (a, b, c)

1 K1,2 + tK1 (0, 2, 3), (1, 1, 4), (0, 1, 1), (1, 0, 2)
2 K1,5 + tK1 (0, 2, 0), (1, 1, 1), (0, 4, 1), (1, 3, 2)
3 K2,5 + tK1 (1, 1, 0), (0, 3, 0), (2, 2, 1), (1, 4, 1)
4 K3,3 + tK1 (1, 1, 0), (2, 2, 1)
5 K1,s + tK1 (none of the above) (0, s− 1, 1), (1, s− 2, 2)
6 Kr,s + tK1 (none of the above) (r − 1, s− 1, 1)

First we consider the case #6. Here, we have (a, b, c) = (r−1, s−1, 1). Suppose that X

has p vertices. Then by the regularity of G, we have r(k−s) = p(r−1), s(k−r) = p(s−1)
and kt = p. From the first two equations, we have k(r− s) = p(r− s). This implies k = p,
since if r = s, then from the second and third equations, we have sk +kt = kst+ rs which
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gives t = 1 and so k = p. From k = p, we have t = 1 and p = rs. We index the vertices of
G as follows. The vertices of X are indexed by (i, j), where 1 ≤ i ≤ r and 1 ≤ j ≤ s. The
vertices of U and V are indexed by (i, 0) (1 ≤ i ≤ r) and (0, j) (1 ≤ j ≤ s), respectively.
The vertex of W is indexed by (0, 0). Then by the results of the previous section it is seen
that (i, j) is joined to (i′, j′) in G if and only if i 6= i′ and j 6= j′. Therefore, G is the
complement of the line graph of Kr+1,s+1.

The next case is #5. Here, we have (a, b, c) = (0, s−1, 1), (1, s−2, 2), where s 6= 1, 2, 5.
Suppose that X has p vertices of type (0, s− 1, 1) and q vertices of type (1, s− 2, 2). By
the regularity of G, we have k−s = q, s(k−1) = p(s−1)+q(s−2) and kt = p+2q. These
equations give (s2 − s)(t− 1) + tq(s− 1) = 2qs which in turn yields t ≤ 3. If t = 3, then
s ≤ 2, a contradiction. If t = 1, then q = 0 which has been dealt with in the preceding
paragraph and hence G is the complement of the line graph of K2,s+1. Now suppose that
t = 2. Then q =

(
s
2

)
and p = 2s. Therefore, G is of order

(
s+3
2

)
. Now it follows that G is

the complement of the line graph of K2,s+3 (also known as the Kneser graph KG(s+3, 2))
since it has a star complement K1,s + 2K1 for eigenvalue 1 (see also [10]).

Next consider the case #1. Suppose that X has p1, p2, p3, p4 vertices of type (0, 2, 3),
(1, 1, 4), (0, 1, 1), (1, 0, 2), respectively. By the regularity of G, we have





k − 2 = p2 + p4,

2(k − 1) = 2p1 + p2 + p3,

tk = 3p1 + 4p2 + p3 + 2p4.

These equations yield t ≤ 5. Let t = 5. Then pi ≤ 10 for 1 ≤ i ≤ 4. We have p2 = k−p4−2
and p3 = k − p4 − 16. Therefore, k − p4 ≥ 16 and so p2 ≥ 14, a contradiction. Hence,
1 ≤ t ≤ 4. If t = 1, then pi = 0 for i = 1, 2, 4 and k = p3 = 2 and we have G = C6. If t = 2,
then the case coincides with the case #5 and hence G is the Petersen graph (KG(5, 2)).
Let t = 3. Then p2 = 0, p1 ≤ 1, p3 ≤ 6 and p4 ≤ 3. Also we have p1 = 6− k which means
k = 5, 6. Now from p4 = k− 2 ≤ 3, it is obtained that k = 5 and hence p1 = 1, p3 = 6 and
p4 = 3. The unique graph we obtain is a srg(16, 5, 0, 2). But there is a unique strongly
regular graph with these parameter which is the complement of the Clebsch graph [6].
Its eigenvalues are 51, 110,−35. Finally, let t = 4. By taking all possibilities for vertices
of any type, we obtain a srg(27, 10, 1, 5). There is a unique strongly regular graph with
these parameter which is the complement of the Schläfli graph [6]. Its eigenvalues are
101, 120,−56. We summarize our results in the following theorem.
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Theorem 5 Let K1,2 + tK1 be a star complement for eigenvalue 1 in a regular graph G.
Then 1 ≤ t ≤ 4. Moreover,

(i) If t = 1, then G is the cycle C6.

(ii) If t = 2, then G is the Petersen graph.

(iii) If t = 3, then G is the complement of Clebsch graph.

(iv) If t = 4, then G is a regular induced subgraph of the complement of the Schläfli
graph.

We now study the case #2. Suppose that X has p1, p2, p3, p4 vertices of type (0, 2, 0),
(1, 1, 1), (0, 4, 1), (1, 3, 2), respectively. By the regularity of G, we have





k − 5 = p2 + p4,

5(k − 1) = 2p1 + p2 + 4p3 + 3p4,

tk = p2 + p3 + 2p4.

These equations yield t ≤ 2. Let t = 0. Then pi = 0 for 2 ≤ i ≤ 4, k = 5 and p1 = 10. The
unique graph we obtain is a srg(16, 5, 0, 2), i.e. the complement of the Clebsch graph. If
t = 1, then p4 = 0 and if we take all possibilities for vertices of other types, then we find a
srg(27, 10, 1, 5), i.e. the complement of the Schläfli graph. Finally, let t = 2. Then pi ≤ 10
for 1 ≤ i ≤ 4. Since p3 = p2 + 10, we have p3 = 10, p2 = 0, p1 = k − 15 and p4 = k − 5.
This implies p4 = 10 and p1 = 0. Therefore, in this situation the case coincides with the
case #5 and G is KG(8, 2). Here is a summary of the results.

Theorem 6 Let K1,5 + tK1 be a star complement for eigenvalue 1 in a regular graph G.
Then 0 ≤ t ≤ 2. Moreover,

(i) If t = 0, then G is the complement of the Clebsch graph.

(ii) If t = 1, then G is a regular induced subgraph of the complement of the Schläfli
graph.

(iii) If t = 2, then G is the complement of the line graph of K8
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Now we deal with the case #4. Suppose that X has p1 and p2 vertices of type (1, 1, 0)
and (2, 2, 1), respectively. By the regularity of G, we have

{
3(k − 3) = p1 + 2p2,

tk = p2.

These equations yield t ≤ 1. If t = 0, then p2 = 0 and if we take all possibilities for
vertices of type 1, then we find a srg(15, 6, 1, 3). There is a unique strongly regular graph
with these parameters which is KG(6, 2) [6]. Its eigenvalues are 61, 19,−35. Now let t = 1.
Then p1, p2 ≤ 9. We have p1 = k − 9 and p2 = k which yield p1 = 0 and p2 = 9. Thus we
have the case #6 and G is the complement of the line graph of K4,4. We summarize the
above results in the following theorem.

Theorem 7 Let K3,3 + tK1 be a star complement for eigenvalue 1 in a regular graph G.
Then 0 ≤ t ≤ 1. Moreover,

(i) If t = 0, then G is a regular induced subgraph of the line graph of K6.

(iii) If t = 1, then G is the complement of the line graph of K4,4.

It remains to consider the case #3 which is somewhat different from the other cases.
Suppose that X has p1, p2, p3, p4 vertices of type (1, 1, 0), (0, 3, 0), (2, 2, 1), (1, 4, 1), respec-
tively. By the regularity of G, we have





2(k − 5) = p1 + 2p3 + p4,

5(k − 2) = p1 + 3p2 + 2p3 + 4p4,

tk = p3 + p4.

These equations yield t ≤ 1. Let t = 0. Then p3 = p4 = 0. If we take all possibilities
for vertices of types 1 and 2, then we find a srg(27, 10, 1, 5), i.e. the complement of the
Schläfli graph. Now assume that t = 1. Note that pi ≤ 10 for 1 ≤ i ≤ 4. We have
p4 = p1 + 10 which yields p4 = 10, p1 = 0 and p2 = p3 = k − 10. It implies any regular
graph containing K2,5 + K1 as star complement for 1, has a 10-regular induced subgraph
F , that is, the subgraph induced on 10 vertices of type 4. We index a vertex of type 2 by
the triple {i, j, k} if it is adjacent to vi, vj , vk in V . Similarly, we index a vertex of type 3
by the pair {i, j} if it is adjacent to vi, vj in V . From (2), it is seen that any two vertices
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of X, one of type 2 and the other of type 3 must have intersecting neighborhoods in V .
This implies that p2, p3 ≤ 5 and so k ≤ 15. Suppose that k = 15. Then p2 = p3 = 5.

Our goal is to find a 15-regular graph, say G, on 28 vertices containing F as an induced
subgraph and having 5 vertices for each of types 2 and 3. By (2), we see that a vertex of
type 2 (3) is adjacent to a vertex of type 4 in the compatibility graph if and only if they
have 2 (1) or 3 (2) common neighbors in V and moreover a vertex of type 2 (3) is adjacent
to a vertex of type 4 in G if and only if they have 2 (1) common neighbors in V . Now an
easy analysis shows that up to isomorphism the following cases may occur for the vertices
of type 2 and 3 in G:

1. type 2: {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5},
type 3: {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3};

2. type 2: {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4} {2, 3, 4},
type 3: {1, 2}, {1, 3}, {1, 4}, {2, 3} {2, 4};

3. type 2: {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 5} {2, 3, 4},
type 3: {1, 2}, {1, 3}, {1, 4}, {2, 3} {2, 5};

4. type 2: {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5} {2, 3, 4},
type 3: {1, 2}, {1, 3}, {1, 4}, {2, 3} {4, 5};

5. type 2: {1, 2, 4}, {1, 2, 5}, {1, 4, 5}, {1, 3, 5} {2, 3, 4},
type 3: {1, 2}, {1, 3}, {1, 4}, {2, 5} {4, 5};

6. type 2: {1, 2, 4}, {1, 3, 4}, {1, 3, 5}, {2, 3, 5} {2, 4, 5},
type 3: {1, 2}, {2, 3}, {3, 4}, {4, 5} {1, 5}.

Since the vertices of types 2 and 3 in G induces a 6-regular graph, only the case 6 can
hold. The graph we obtain is a srg(28, 15, 6, 10). There are four strongly regular graphs
with these parameters, one is the Kneser graph KG(8, 2) and the other three are the
complements of the Chang graphs (see [7, page 258] and [6]). Since KG(8, 2) has no
induced subgraph K2,5 + K1, G must be the complement of a Chang graph. Similarly, we
deal with the other values of k and we find that there are solutions for k = 10, 12, 13 and
they are induced subgraphs of the one with k = 15. In the following we demonstrate the
choices for vertices of type 2 and 3 in each case.
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• k = 10, p2 = p3 = 0.

• k = 12, type 2: {1, 3, 5}, {2, 4, 5}, type 3: {1, 2}, {3, 4}.

• k = 13, type 2: {1, 2, 4}, {1, 3, 5}, {2, 3, 5}, type 3: {1, 2}, {3, 4}, {4, 5}.

We summarize the above in the following theorem.

Theorem 8 Let K2,5 + tK1 be a star complement for eigenvalue 1 in a regular graph G.
Then 0 ≤ t ≤ 1. Moreover,

(i) If t = 0, then G is a regular induced subgraph of the complement of the Schläfli
graph.

(ii) If t = 1, then G is a regular induced subgraph of the complement of a Chang graph.
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[5] F. K. Bell and S. K. Simić, On graphs whose star complement for −2 is a path
or a cycle, Linear Algebra Appl. 377 (2004), 249–265.

[6] A. E. Brouwer, Strongly regular graphs, in: Handbook of Combinatorial Designs-
Second edition, eds. C.J. Colbourn and J.H. Dinitz, CRC Press, Boca Raton, FL,
2007, 852–868.

15



[7] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-regular graphs,
Springer-Verlag, Berlin, 1989.
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