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Abstract. In this paper, the notion of trades over finite fields is introduced.

In particular, trades over GF (3) (ternary trades) are studied. By considering the

incidence matrix of t-subsets vs. k-subsets of a v-set as a parity check matrix of

a ternary code, we obtain a new family of codes in which every codeword is a

ternary trade. The spectrum of weights of these codes is discussed; a simple and

fast algorithm for decoding is given; and the automorphism group of the codes is

determined. We also provide a table of all non-isomorphic ternary trades of weight

at most 12.
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1. Introduction

For given integers v, k and t such that v > k > t > 0, let S be a v-set and let Pk(S)

denote the set of all k-subsets (called blocks) of S. Let P v
t,k be the

(
v
t

)
by

(
v
k

)
incidence
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matrix whose rows are indexed by the t-subsets of S, whose columns are indexed by the

blocks of S (in some fixed ordering for t-subsets and some fixed ordering for blocks), and

the entry P v
t,k(A, B) of row A and column B is 1 if A ⊂ B and 0 otherwise.

The integral solutions T of the equation

P v
t,kT = 0 (1)

which form a Z-module, are well known combinatorial objects called (v,k,t) trades. The

entries of a trade T are indexed by the blocks with the same ordering as the columns

of P v
t,k. By considering the vector space formed by the solutions of (1) over a finite field

GF (p), p being prime, we will introduce a new notion of trades.

Considering P v
t,k as a parity check matrix of a p-ray code, we obtain a new family of

codes (denoted by Cv
t,k(p)) in which every codeword is a trade over GF (p). The length

of the code is
(

v
k

)
and its dimension is

(
v
k

)
−rankp(P

v
t,k) (rankp(P

v
t,k) is obtained from a

theorem of R. M. Wilson). The codes Cv
1,k(2), namely the binary codes arising from

(v, k, 1) trades over GF (2), were studied in [5]. In this paper, we study the case Cv
2,3(3).

For Cv
2,3(3), the spectrum of weights is discussed; a simple and fast algorithm for decoding

is given; and the automorphism group of the codes is determined. We also provide a table

of all non-isomorphism codewords (trades) of weight at most 12.

Finally we note that the graphical codes were recently studied extensively by D. Jung-

nickel and S. A. Vanstone [2] and by some some other authors and our work in this paper

and [5] in some sense is an extention of graphical codes on complete graphs.

2. Preliminaries

Let v, k and t be positive integers satisfying v− t > k > t ≥ 0 and S be a v-set. A (v, k, t)

trade T = {T+, T−} over Z consists of two disjoint collections T+ and T−of blocks of S

not necessarily distinct, such that for every t-subset A of S, the number of blocks con-

taining A is the same in both T+ and T−. The foundation of T is the set of all elements

covered by T+ and T− and is denoted by found(T ). The number of blocks is the same

in T+ and T− and is called the volume of T (denoted by vol(T )).

We now introduce the notion of trades over GF (p).

Definition. A (v, k, t) trade T over GF (p) is a collection of blocks of S such that each

block is repeated at most (p− 1) times and that for every t-subset A of S, the number of

blocks containing A is equal to 0 (mod p).
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For a given trade T over Z, one can naturally associate a
(

v
k

)
-integral column vector

which is a solution T of (1), and conversely every integral solution of (1) corresponds to a

trade over Z. The set of all (v, k, t) trades over Z forms a Z-module. Similarly, every trade

over GF (p) corresponds to a
(

v
k

)
-dimnesional column vector which is a solution of (1) over

GF (p) and vice versa. In the sequel, by abuse of notations we will denote both the vector

and combinatorial representations of a trade by T . Let Cv
t,k(p) be a p-ray code with parity

check matrix P v
t,k. So there is a correspondence between codewords of Cv

t,k(p) and (v, k, t)

trades over GF (p) and we use the words “trade” and “codeword” interchangeably.

Hereafter, we only focus on (v, 3, 2) trades over GF (3) which we call them ternary

trades. Also we write Cv instead of Cv
2,3(3). For these trades, we can partition the blocks

of a trade T (as in trades in the usual sense) into two disjoint collections T+ and T−. In

this representation of T we denote the number of appearances of the pair ij (i, j ∈ S) by

λ+
ij and λ−ij in the blocks of T+ and T−, respectively. Then for each pair ij, λ+

ij − λ−ij ≡ 0

(mod 3). Every simple trade over Z (a trade with no repeated blocks) is also a ternary

trade but the converse is not true. As an important example, for any 5-subset L of S, we

have the trade IL, where I+
L = P3(L) and I−L = ∅.

From hereafter, we use the standard notation of coding theory: by a (n, k, d) code C,

we mean a linear code of length n, dimension k, and minimum distance d. The weight of

a codeword c ∈ C is denoted by wt(c) and the weight enumerator of C by AC(x).

Interested reader on codes can consult [6, 7], and interested reader on trades is referred

to [1].

We close this section by stating the well known p-rank theorem of Wilson. The theorem

shows that the dimension of P v
2,3 is

(
v
2

)
− 1.

Theorem A [8]. For t ≤ min{k, v − k},

rankp(P
v
t,k) =

∑ (
v

i

)
−

(
v

i− 1

)
where the sum is extended over those indices i such that p does not divide the binomial

coefficient
(

k−i
t−i

)
.

3. Spectrum

In this section, we determine the spectrum of weights for v = 0 (mod 3). It is shown

that for v ≥ 9, there exists a codeword of any weight at least 12. We would like to point

out that the same result is valid for all sufficiently large v but the proofs for the cases

v ≡ 1, 2 (mod 3) are more laborious and therefore are not given here. First we provide

3



the characterization of all codewords of weight at most 12. There exist exactly 9 non-

isomorphic ternary trades of weight at most 12 which are denoted by T1 to T9 and are

shown in the Table 1 of the Appendix. The following facts about simple trades over Z
have been known for sometimes. For these trades, the minimum volume is 4 and trades

of this volume have a unique structure (see T1) [1]. The next possible volume is 6 and

there exist 4 non-isomorphic trades of this kind (see T2 to T5) [3,4]. T6 to T9 are ternary

trades but not trades over Z and have been obtained by computer. Therefore, we have

the following theorem.

Theorem 1. For every v, Cv is a
((

v
3

)
,
(

v
3

)
−

(
v
2

)
+ 1, 8

)
ternary code.

In the proof of Theorem 2 below, we need a special family of trades which are intro-

duced in the following example.

Example. For α, β ≥ 1, let X = {1, 2, . . . , 3α} and Y = {3α + 1, . . . , 3α + 3β}. Let

Tα,β = {T+, T−} be defined as follows:

T+ = {x1x2y|x1, x2 ∈ X and y ∈ Y },
T− = {xy1y2|x ∈ X and y1, y2 ∈ Y }.

It is easy to see that Tα,β is a ternary trade.

The weight enumerator polynomial of C6 is given in the Appendix. As one can see, the

spectrum of weights of C6 is 8, 10, 12, 13, . . . , 16, 18, 20. For v ≥ 9, we have the following

theorem.

Theorem 2. Let v ≡ 0 (mod 3) and v ≥ 9. Then Cv has a codeword of weight d if and

only if d = 8, 10, 12, 13, . . . ,
(

v
3

)
.

Proof. Let d ≤ 12. By Table 1 of the Appendix there exist a codeword of weight d if

and only if d = 8, 10, 12. Now let d =
(

v
3

)
. By induction we show that a trade T of

weight d and foundation size v exists. For v = 9, let T+ be the blocks of a 2-(9,3,2)

design and T− be all of the remaining blocks. To establish the main statement of the

induction, let v ≥ 12 and for every w ≡ 0 (mod 3) and w < v, assume that a trade

Tw with |found(Tw)| = w and wt(Tw) =
(

w
3

)
exists. Now for v = 3(α + β) (α, β ≥ 2),

we consider the trades T3α with found(T ) = {1, 2, . . . , 3α} and wt(T3α) =
(
3α
3

)
and T3β

with found(T3β) = {3α + 1, 3α + 2, . . . , 3α + 3β} and wt(T3β) =
(
3β
3

)
. Now the trade

T = Tα,β + T3α + T3β is the desired trade.
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To complete the proof we again use the inductive argument. For small v, namely

v = 9, 12, and 15, we have constructed codewords of all weights greater than 12 via a

computer program. For v ≥ 18, we assume that a codeword of weight d for 12 ≤ d ≤
(

v−3
3

)
based on the set {1, 2, 3, . . . , v− 3} exists. Therefore it suffices to construct codewords of

larger weights. By adding T v−3
3

,1 to each of the trades of smaller weight, one can obtain

a codeword of weight d for
(

v−3
3

)
< d <

(
v
3

)
.�

4. Decoding

In this section, we present a simple and fast algorithm for decoding the ternary code Cv.

Cv is a 3-error correcting code, so we assume that at most three errors are admissible

during transmission. We call the indices of transformed entries bad blocks.

Consider a received word X. Let [exy] = P v
23X and define e : P2(S) → Z3 as e(xy) =

exy. Let R= {xy|x, y ∈ S, e(xy) 6= 0}. R in fact is the set of unbalanced pairs of X.

Assume that Q is the set of points covered by the elements of R. A point x ∈ Q is called

special if there are exactly two pairs in R containing x and e has the same value for these

pairs. For a special point x, there are two possibilities for the bad blocks:

(i) There is a unique bad block containing x say xyz with error e(xy).

(ii) There are three bad blocks of the unique form xyz, xyt, and xzr with errors −1, 1,

and 1, respectively. In this situation, we have two other special points t and r.

We now consider the case in which Q contains no special point. Clearly, each point

of Q appears in at least two bad blocks. Therefore, we have the unique form for the bad

blocks: xyz, xyt, and xzt. It is not difficult to see that x is the unique point of Q such

that e has the same value for all pairs in R containing x.

Based on the above observations, we state the following algorithm.

Algorithm. Let X be a received word with at most three errors.

(1) Compute [e(xy)] = P v
tkX and then let R= {xy|x, y ∈ S, e(xy) 6= 0}.

(2) If there is no special point in Q, then find the unique point x such that e has the

same value for the pairs in R containing x. Then the bad blocks are xyz, xyt, and

xzt (with errors e(yz), e(yt), and e(zt), respectively ), where y, z, t ∈ Q.

(3) While R6= ∅ do
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(i) Find a special point x in Q with pairs say xy and xz. If not found, change the

last bad block to its primary state and choose a special point different from

the last one.

(ii) By putting e(xy) = e(xz) = 0, omit the pairs xy and xz from R and let

e(yz) := e(yz) − e(xy). If e(yz) 6= 0, add yz to R. Save xyz as the last bad

block with error e(xy) and x as the last point.

The decoding procedure is carried out within time O(n
5
3 ), where n is the length of the

code.

5. Automorphism

In this section we characterize the full automorphism group of Cv denoted by Aut(Cv).

Let Sv be the symmetric group on v points.

Theorem 3. For v ≥ 6, Aut(Cv) ∼= Sv × Z2.

Proof. Let σ ∈ Sv . The action of σ over S induces a permutation π on blocks of S (the

coordinate positions). Clearly π(Cv) = Cv and hence π is an element of Aut(Cv) which

corresponds to (π, 0). By multiplying every coordinate position of Cv by −1 together

with the action of π we obtain another element of Aut(Cv) which corresponds to (π, 1).

This shows that Sv ×Z2 is isomorphic to a subgroup of Aut(Cv). To complete the proof,

it is sufficient to prove that they are equal.

Because of the unique structure of the codewords of weight 10, it is clear that if the

action of an automorphism of the code is multiplication of at least one column of Cv by

−1, then it is necessary to multiply all the columns of Cv by −1. Therefore it is sufficient

to show that very element of Aut(Cv) which only permutes the columns of the code is

an induced permutation coming from Sv. To show this, let π be such an element. The

completion of the proof again relies on the unique structure of codewords of weight 10.

In fact the action of π over codewords of weight 10 induces an action of π over 5-subsets

of S. So let π(12345) = abcde, then for every x ∈ S\{1, 2, . . . , 5}, π transfers 1234x to

abcdy. By this we obtain a permutation σ on S for which σx = y and it is clear that π is

the induced permutation of σ over 3-subsets of S. �
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Appendix

1. Table 1 contains the ternary trades of weight at most 12.

T1 T2 T3 T4 T5 T6 T7 T8 T9

135 123 123 123 123 123 123 123 123
146 124 124 167 145 124 124 124 124
236 156 156 247 167 125 125 125 125
245 256 157 257 248 134 367 134 134

345 267 346 368 135 467 136 135
346 345 357 578 145 567 234 145

234 246
235 345
245
345

136 125 126 127 124 136 145 623
145 126 127 136 136 146 146 624
235 134 135 235 157 156 235 625
246 234 145 246 238 237 236 634

356 237 347 458 247 635
456 567 567 678 257 645

Table 1.

2. The weight enumerator polynomials of Cv for v = 6 and v = 7 are presented below.

AC6(x) = 1 + 30x8 + 12x10 + 240x12 + 120x13 + 120x14 + 144x15 + 30x16 + 20x18 + 12x20.

AC7(x) = 1 + 30x8 + 42x10 + 2940x12 + 2100x13 + 9900x14 + 46368x15 + 52290x16

+ 95760x17 + 527460x18 + 402990x19 + 692496x20 + 2328900x21 + 1189650x22

+ 129402x23 + 3339000x24 + 1173564x25 + 928620x26+1512560x27+346380x28

+ 162540x29 + 167469x30 + 21630x31 + 5040x32 + 1890x33 + 60x35.
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