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Abstract

We consider θ-graphs, that is, graphs obtained by subdividing the edges of the multigraph
consisting of 3 parallel edges. It is shown that any θ-graph G is determined by the spectrum
(the multiset of eigenvalues) except possibly when it contains a unique 4-cycle.
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1 Introduction

In this paper, we are concerned only with undirected simple graphs (loops and multiple edges
are not allowed). Let G be a graph with the adjacency matrix A. We denote det(λI − A),
the characteristic polynomial of G, by P (G,λ). The multiset of eigenvalues of A is called the
adjacency spectrum, or simply the spectrum of G. Since A is a symmetric matrix, the eigenvalues
of G are real. Two nonisomorphic graphs with the same spectrum are called cospectral. We say
that a graph is determined by the spectrum (DS for short) if there is no other nonisomorphic
graph with the same spectrum.

In [4], it is conjectured that almost all graphs are DS. Nevertheless, the set of graphs which
are known to be DS is small and therefore it would be interesting to find more examples of DS
graphs. For a survey of the subject, the reader can consult [4, 5]. A list of more recent papers
which have not been cited in [4, 5] includes [1, 2, 10, 11]. In recent years, spectral characterization
of some well known classes of graphs possessing simple structures such as starlike trees [9, 14],
lollipop graphs [2, 8], the complement of the path [6], graphs with index at most 2 [11, 13] and
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5 [7] have been studied. Here, we continue this line of research by investigating the so

called θ-graphs. Let Pn and Cn denote the path and the cycle with n vertices, respectively. We
denote the graph shown in Figure 1 (2) by θ(a, b, c) (d(a, b, c)) and call it a θ-graph (d-graph).
Note that in both graphs removing the vertices of degree 3, leaves three disjoint paths Pa, Pb

and Pc. For a θ(a, b, c) graph, we always assume that a ≤ b ≤ c and for a d(a, b, c) graph,
a ≤ c. In this note, we show that any θ-graph G is determined by the spectrum (the multiset of
eigenvalues) except possibly when it contains a unique 4-cycle.
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Figure 1: θ(a, b, c)
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Figure 2: d(a, b, c)

2 Structure of graphs cospectral to θ-graphs

In this section we determine the structure of graphs which can be cospectral to a θ-graph with
no 4-cycle. The following lemma shows that the degree sequence of such graphs is determined
by the spectrum. In order to prove this, we use the fact that two cospectral graphs have the
same number of closed walks for any length [4]. Let G and H be two cospectral graphs. Then
the degrees of vertices satisfy certain equations. Let xi and yi denote the numbers of vertices of
degree i in G and H, respectively. By counting the number of vertices, edges and closed walks
of length 4 in G and H, we have the following relations:

∑
xi =

∑
yi,

∑
ixi =

∑
iyi,

∑
ixi + 4

∑(
i

2

)
xi + 8n4 =

∑
iyi + 4

∑(
i

2

)
yi + 8n′4,
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where n4 and n′4 are the numbers of 4-cycles in G and H, respectively. By adding up these
equations with coefficients 1,−5/4 and 1/4, respectively, we obtain that

∑(
i− 1

2

)
xi + 2n4 =

∑(
i− 1

2

)
yi + 2n′4. (1)

Lemma 1 The degree sequence of any graph H cospectral to a θ-graph G with n vertices and
with no 4-cycle is determined by the shared spectrum.

Proof. Let yi denote the number of vertices of degree i in H. Then by (1),

∑(
i− 1

2

)
yi + 2n′4 = 2,

where n′4 is the number of cycles of length 4 in H. This yields

y0 + y3 + 2n′4 = 2

and yi = 0 for i > 3. If n′4 = 1, then y0 = y3 = 0 and so y2 = n + 2, a contradiction. Therefore,
n′4 = 0 and we have y0 + y3 = 2. If y0 = 2 and y3 = 0, then y2 = n + 4, a contradiction. If
y0 = y3 = 1, then y2 = n + 1 which is impossible. Hence y0 = 0 and y3 = 2 which imply the
assertion. ¤

The following is a direct consequence of the lemma above and the fact that cycles have an
eigenvalue 2.

Lemma 2 A graph cospectral to a θ-graph with no 4-cycle and no eigenvalue 2 is θ-graph or
d-graph with no 4-cycle.

3 No θ-graphs are cospectral

In the section we show that no two θ-graphs are cospectral. To do this, we first need to compute
the characteristic polynomial of θ-graphs. We make use of the following lemma.

Lemma 3 [3, 12] Let v be a vertex of a graph G and let C(v) denote the collection of cycles
containing v. Then the characteristic polynomial of G satisfies

P (G,λ) = λP (G \ {v}, λ)−
∑
u∼v

P (G \ {u, v}, λ)− 2
∑

Z∈C(v)

P (G \ V (Z), λ).

For the sake of simplicity, we denote P (Pr, λ) by pr = pr(λ). By convection, we let p0 = 1,
p−1 = 0 and p−2 = −1. Using Lemma 3 with v being the vertices of degree 3, we can compute
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the characteristic polynomial of θ(a, b, c) in terms of the characteristic polynomial of paths. We
have

P (θ(a, b, c), λ) =λ2papbpc − 2λ(pa−1pbpc + papb−1pc + papbpc−1)

+ 2(pa−1pb−1pc + pa−1pbpc−1 + papb−1pc−1)

+ pa−2pbpc + papb−2pc + papbpc−2 − 2(pa + pb + pc). (2)

The next lemma follows from (2) and the fact that pr(2) = r + 1.

Lemma 4 P (θ(a, b, c), 2) = (a− 1)(b− 1)(c− 1)− 4(a + b + c + 1).

By Lemma 3, we have
pr = λpr−1 − pr−2.

Solving this recurrence equation, we find that for r ≥ −2,

pr =
x2r+2 − 1
xr+2 − xr

, (3)

where x satisfies x2 − λx + 1 = 0. If we substitute (3) in (2), then we obtain

(x2 − 1)3xm+2P (θ(a, b, c), λ) + 1− 4x2 + 4x4 − x2m+6(x2 − 2)2 = Q(a, b, c; x), (4)

where m = a + b + c and

Q(a, b, c; x) =x2a+6 + x2b+6 + x2c+6 + 2xa+b+2 + 2xa+c+2 + 2xb+c+2 − 4xa+b+4 − 4xa+c+4 − 4xb+c+4

+ 2xa+b+6 + 2xa+c+6 + 2xb+c+6 − x2a+2b+4 − x2a+2c+4 − x2b+2c+4 + 4x2a+b+c+6

+ 4xa+2b+c+6 + 4xa+b+2c+6 − 2x2a+b+c+4 − 2xa+2b+c+4 − 2xa+b+2c+4

− 2x2a+b+c+8 − 2xa+2b+c+8 − 2xa+b+2c+8. (5)

(We have used Maple to perform the calculations).

Lemma 5 No two nonisomorphic θ-graphs are cospectral.

Proof. Suppose that G = θ(a, b, c) and G′ = θ(a′, b′, c′) are cospectral. By the convection,
a ≤ b ≤ c and a′ ≤ b′ ≤ c′. since G and G′ have the same number of vertices, we have

a + b + c = a′ + b′ + c′, (6)

and by (4),
Q(a, b, c; x) = Q(a′, b′, c′; x). (7)

Also by Lemma 4,
(a− 1)(b− 1)(c− 1) = (a′ − 1)(b′ − 1)(c′ − 1). (8)

The smallest exponent of x in Q(a, b, c; x) is equal to 2a + 6 or a + b + 2. Therefore, by (7),
without loss of generality, we may assume that one of the following occurs: (i) 2a + 6 = 2a′ + 6,
(ii) a + b + 2 = a′ + b′ + 2 or (iii) 2a + 6 = a′ + b′ + 2.
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First let (i) hold. Then a = a′. If a 6= 1, then by (6) and (8), (a, b, c) = (a′, b′, c′) and we
are done. Hence suppose that a = 1. The smallest power of x is equal to b + 3 and b′ + 3
in Q(a, b, c; x) − x2a+6 and Q(a′, b′, c′; x) − x2a+6, respectively. Thus, b = b′ and the assertion
follows from (6).

Next suppose that (ii) holds. Then by (6), c = c′. If c 6= 1, then by (6) and (8), (a, b, c) =
(a′, b′, c′). If c = 1, then we necessarily have b = b′ = 1. Therefore, (a, b, c) = (a′, b′, c′) ∈
{(0, 1, 1), (1, 1, 1)} and the assertion follows.

Finally we assume that (iii) holds. We may suppose that (ii) does not occur. Then since (ii)
doss not hold, we have a + b + 2 > 2a + 6 which yields 2b + 6 > 2a + 6. Hence the coefficient
of x2a+6 in the left hand side of (7) is 1. This provides a contradiction since the coefficient of
xa′+b′+2 = x2a+6 in the right hand side of (7) is at least 2. ¤

4 θ- and d-graphs are not cospectral

In the section we demonstrate that a θ-graph and a d-graph cannot be cospectral. Using Lemma
3, we first compute the characteristic polynomial of d-graphs. We have

P (d(r, k, s), λ) =λ2prpspk − 2λ(pr−1pspk + prps−1pk + prpspk−1 + prpk + pspk)

+ 2(2pr−1ps−1pk + pr−1pspk−1 + prps−1pk−1) + prpspk−2

+ 4(pr−1pk + ps−1pk) + 2(prpk−1 + pspk−1) + 4pk. (9)

If we substitute (3) in (9), then we obtain

(x2 − 1)3xm+2P (d(r, k, s), λ) + 1− 4x2 + 4x4 − x2m+6(x2 − 2)2 = U(r, k, s; x), (10)

where m = r + s + k and

U(r, k, s;x) =2xr+1 + 2xs+1 − 6xr+3 − 6xs+3 + 4xr+5 + 4xs+5 − x2r+2 − x2s+2 + 2x2r+4 + 2x2s+4

− 4xr+s+2 + 8xr+s+4 − 4xr+s+6 + 2xr+2s+3 + 2x2r+s+3 − 2xr+2s+5 − 2x2r+s+5 − x2r+2s+4

+ 2xr+2k+5 + 2xs+2k+5 − 2xr+2k+7 − 2xs+2k+7 − 2x2r+2k+6 − 2x2s+2k+6 + x2r+2k+8

+ x2s+2k+8 + 4xs+r+2k+4 − 8xs+r+2k+6 + 4xs+r+2k+8 − 4xr+2s+2k+5 − 4xs+2r+2k+5

+ 6xr+2s+2k+7 + 6xs+2r+2k+7 − 2xr+2s+2k+9 − 2xs+2r+2k+9 + x2k+6. (11)

The following lemma follows from (9) and pr(2) = r + 1.

Lemma 6 P (d(r, k, s), 2) = (r + 1)(s + 1)(k − 1).

Lemma 7 Let a ≤ b ≤ c, r = a + b + 1 ≤ s = c − a − 1 and k = a. Then P (θ(a, b, c), 2) 6=
P (d(r, k, s), 2).
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Proof. Let h := P (θ(a, b, c), 2)− P (d(r, k, s), 2). Then by Lemmas 4 and 6,

h = (a + 1)(a2 − ac + ab− c− 5− 3b).

By the assumption, we have c ≥ 2a + b + 2. Therefore,

h = (a + 1)(a2 − ac + ab− c− 5− 3b)

≤ (a + 1)(a2 − a(2a + b + 2) + ab− (2a + b + 2)− 5− 3b)

= −(a + 1)(a2 + 4a + 4b + 7)

< 0.

¤

Lemma 8 There is no θ-graph cospectral with a d-graph.

Proof. Let G = θ(a, b, c) be cospectral with G′ = d(r, k, s). By the convection, a ≤ b ≤ c and
2 ≤ r ≤ s. Since G and G′ have the same number of vertices, we have

a + b + c = r + s + k, (12)

and by (4) and (10),
Q(a, b, c; x) = U(r, k, s;x). (13)

We claim that r = a + b + 1 and k = a. Note that if this claim is proven, then by Lemma 7, we
have a contradiction and hence the assertion follows.

Let f denote the smallest exponent of x in Q(a, b, c; x) (also in U(r, k, s;x) by (13)). By (5),
f = 2a + 6 or a + b + 2. Also by (11), f = r + 1 or 2k + 6. We consider two cases.

(i) Let f = 2a + 6 < a + b + 2. It is easily seen that the coefficient of xf in Q(a, b, c; x) is 1.
By (13), the coefficient of xf in U(a, b, c; x) should also be 1 and since the coefficient of xr+1 in
U(a, b, c;x) is at least 2, we necessarily have f = 2k + 6 which yields k = a. The smallest power
of x is equal to a + b + 2 and r + 1 in Q(a, b, c; x)− x2a+6 and U(r, k, s; x)− x2k+6, respectively.
Thus, r + 1 = a + b + 2 and the claim is established in this case.

(ii) Let f = a+b+2 ≤ 2a+6. It is easily seen that the coefficient of xf in Q(a, b, c; x) is at least
2. By (13), the coefficient of xf in U(a, b, c;x) should also be at least 2 and since the coefficient of
x2k+6 in U(a, b, c;x) is 1, we necessarily have f = r+1 which yields r+1 = a+ b+2. It remains
to show that k = a. We first observe that if b = 1, then by Lemma 4, P (θ(a, b, c), 2) < 0 and so
by Lemma 6, k = 0. This observation results in that if b = 1 and a = 0, the k = a as required
and so hereafter we may assume that (a, b) 6= (0, 1). First suppose b ≥ 2 or b = a = 1, c > 4. By
a+b+1 = r ≤ s ≤ s+k ≤ a+b+c−r = c−1, we have c ≥ a+b+2. We determine the smallest
power h of x inQ := Q(a, b, c;x)−2xa+b+2+4xa+b+4. Then by (5) and noting that c ≥ a+b+2, h

is the smallest power of x inQ′ = x2a+6+x2b+6+2xa+c+2+2xb+c+2+2xa+b+6−x2a+2b+4. It is then
seen that h = 2a+6 and the coefficient of xh in Q′ (which is the same as that inQ) is positive and
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different from 2. Now we compute the smallest power h′ of x in U := U(r, k, s; x)−2xr+1+4xr+3.
By (11), h′ is the smallest power of x in U ′ = x2k+6 + 2xs+1 − 2xr+3 − 6xs+3 (note that since
r = a + b + 1 > 1, all the powers in U − U ′ are greater than r + 3). Since h′ = h > 0 and the
coefficient of xh′ in U ′ (which is the same as that in U) is not 2, clearly we have h′ = 2k + 6.
Hence h = 2a + 6 = h′ = 2k + 6 which gives k = a. Now let b = a = 1 and c ≤ 4. By
the above observation, we have k = 0. By (12) and Lemmas 4 and 6, r + s + 2 = c + 4 and
(r + 1)(s + 1) = 4(c + 3). However, these equations have no solutions for c ≤ 4. This completes
the proof. ¤

5 θ-graphs with an eigenvalue 2

The following lemma shows that there are a handful of θ-graphs admitting 2 as an eigenvalue.

Lemma 9 θ(a, b, c) has 2 as an eigenvalue if and only if (a, b, c) is as follow.

# 1 2 3 4 5 6 7 8 9 10
a 2 2 2 2 2 3 3 3 4 5
b 6 7 8 9 11 4 5 7 4 5
c 41 23 17 14 11 19 11 7 9 5

Moreover, for these graphs, 2 is the second largest eigenvalue and has multiplicity 1.

Proof. Let 2 be an eigenvalue of θ(a, b, c). Then, by Lemma 4,

abc− ab− ac− bc− 3(a + b + c)− 5 = 0. (14)

Note that 1 < a < 6, since otherwise,

6bc ≤ ab + ac + bc + 3(a + b + c) + 5 or bc ≥ ab + ac + bc + 3(a + b + c) + 5,

which are both impossible. Solving the equation (14) for a = 2, 3, 4, 5 gives the first part of
the lemma. Since the spectral radius of θ-graphs is greater than 2, the second part follows by
removing the vertices of degree 3 and applying the interlacing theorem. ¤

It is not hard to show that all graphs of Lemma 9 are DS. We prove this assertion for some
cases. The proof for other cases is similar.

Let G be any of the graphs of Lemma 9. Let H be cospectral to G. By Lemmas 1, 5, 8
and 9, H = K + Cm, where K is a θ- or a d- graph with no 4-cycle and m 6= 4. First let
G = θ(2, 11, 11). By corresponding an eigenvector it is easy to see that G does not admit −2 as
an eigenvalue. Since even cycles have an eigenvalue −2, it follows that m is odd. It is well known
that the length of shortest odd cycle in a graph and the number of such cycles is determined by
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the spectrum. The shortest odd cycle of G is of length 15 and there are two such cycles. Since
m is odd, it follows that H has more than 30 vertices, a contradiction. Therefore, G is DS.

Next let G = θ(5, 5, 5). Since G is bipartite, so is H. We have K = θ(2a + 1, 2b + 1, 2c + 1)
or K = d(2r + 1, k, 2s + 1). If K = d(2r + 1, k, 2s + 1), then H has at least 18 vertices, a
contradiction to the fact that G has 17 vertices. Hence, K = θ(2a + 1, 2b + 1, 2c + 1). Note that
if c ≤ 2, then the largest eigenvalue of H will be greater than the largest eigenvalue of G [3],
a contradiction. Since m > 6, a = b = 0 and c = 3 which contradicts the fact that H has no
4-cycle. Hence, G is DS.

Finally assume that G = θ(2, 9, 14). The shortest odd cycle of G is of length 13 and there is
a unique such cycle. Note that m is odd, since −2 is not an eigenvalue of G. If K has an odd
cycle, then H has at least 28 vertices, a contradiction since H has 27 vertices. Therefore, K is
bipartite. It follows that −λ is an eigenvalue of G, where λ is the largest eigenvalue of K (also
G). Since G is connected, we find that G is bipartite, a contradiction.

We rely on the following lemma.

Lemma 10 Any θ-graph with an eigenvalue 2 is DS.

6 The main result

We first consider θ-graphs which contain 4-cycles. There are only two θ-graphs with more than
one 4-cycle. They are θ(1, 1, 1) and θ(0, 2, 2). We prove that both graphs are DS. For θ-graphs
with a unique 4-cycle, a list of possible degree sequences of cospectral mates is presented.

Lemma 11 Let G be a θ-graph containing more than one 4-cycle. Then G is DS.

Proof. First assume that G has three 4-cycles. Then G = θ(1, 1, 1), a bipartite graph. There
exists only one bipartite graph with 5 vertices and 6 edges, i.e. K2,3 which is isomorphic to
θ(1, 1, 1). It follows that G is DS. Now suppose that G has exactly two 4-cycles. Then G

is necessarily θ(0, 2, 2) which is bipartite. There exist exactly three bipartite graphs with 6
vertices and 7 edges. One of them is θ(0, 2, 2). The other two graphs are obtained from θ(1, 1, 1)
by adding a pendant edge at a vertex of degree 2 and 3. Let H be any of these graphs. Let yi

denote the number of vertices of degree i in H. Then (y1, y2, y3, y4) = (1, 2, 3, 0) or (1, 3, 1, 1).
If H is cospectral to G, then by (1), we must have y3 + 3y4 + 6 = 6, a contradiction. Therefore,
G is DS. ¤

Now assume that G is a θ-graph with n vertices containing a unique 4-cycle. Let H be
cospectral to G and let yi denote the number of vertices of degree i in H. Then by (1), we
have y0 + y3 + 3y4 + 2n′4 = 4, where n′4 is the number of 4-cycles in H. This equation leads to
three solutions for the degree sequence of H: (y0, y1, y2, y3, y4; n′4) = (0, 0, n−2, 2, 0; 1), (0, 1, n−
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3, 1, 1; 0), (0, 2, n − 6, 4, 0; 0). If (y0, y1, y2, y3, y4;n′4) = (0, 0, n − 2, 2, 0; 1), then by Lemma 9, H

is a θ-graph or a d-graph which is impossible by Lemmas 5 and 8. For the other two cases, we
find many candidates for H which make the problem more involved and complicated. Finally,
we mention that a similar problem, i.e. lollipop graphs with 4-cycles have been dealt with in
the long paper [2].

Finally we present our main result.

Theorem 1 Any θ-graph with no unique 4-cycle is DS.

Proof. If G has an eigenvalue 2, then the assertion follows from Lemma 10. Otherwise, it
follows from Lemmas 2, 5, 8, and 11. ¤

Acknowledgment The authors thank the referee for the helpful comments which considerably
improved the paper.
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