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Abstract

Trades, as combinatorial objects, possess interesting combinatorial and alge-
braic properties and play a considerable role in various areas of combinatorial
designs. In this paper we focus on trades within the context of t-designs. A ped-
agogical review of the applications of trades in constructing halving t-designs
is presented. We also consider (N, t)-partitionable sets as a generalization of
trades. This generalized notion provides a powerful approach to the construc-
tion of large sets of t-designs. We review the main recursive constructions and
theorems obtained by this approach. Finally, we discuss the linear algebraic
representation of trades and present two applications.

1 Introduction

Let v, k, t and λ be integers such that v ≥ k ≥ t ≥ 0 and λ ≥ 1. Let X be a
v-set and let Pi(X) denote the set of all i-subsets of X for any i. A t-(v, k, λ) design
(briefly t-design) is a pair D = (X,B) in which B is a collection of elements of Pk(X)
such that every A ∈ Pt(X) appears in exactly λ elements of B. Let N be a natural
number greater than 1. A large set of t-(v, k, λ) designs of size N , LS[N ](t, k, v), is
a set of N disjoint t-(v, k, λ) designs (X,Bi) such that {Bi| 1 ≤ i ≤ N} is a partition
of Pk(X). A T (t, k, v) trade is a pair T = (X, {T+, T−}) in which T+ and T− are
two disjoint collections of elements of Pk(X) such that for every A ∈ Pt(X), the
number of occurrences of A in T+ is the same as the number of occurrences of A
in T−, i.e. T+ and T− are mutually balanced. Note that some elements of Pt(X)
may not appear in T+ and T−. For simplicity, we write (X; T+, T−) instead of
(X, {T+, T−}).

The family of t-designs are among the most important and fundamental families
of combinatorial designs. They show up in different areas of combinatorics such
as coding theory, group theory, finite geometry and so on. They are employed
in construction of various combinatorial designs and configurations. In particular,
2-designs, for their statistical optimality properties, are widely used in design of
experiments.

Trades are useful combinatorial objects with interesting combinatorial and alge-
braic properties. They appear in various contexts of combinatorial design theory.
Trades were first introduced in the theory of t-designs by some authors under differ-
ent names in the seventies of the last century (see [17] for details). In recent years
Latin trades in connection to Latin squares and graphical trades related to graphical
designs have been investigated. For a survey of trades in different contexts we refer
the reader to [9]. The reference [22] is a survey specifically devoted to applications
of trades in the theory t-designs.

In this paper, we consider trades within the context of t-designs. Trades are
very useful in the study of t-designs with many applications. They are utilized in
constructing signed t-designs, nonisomorphic t-designs and t-designs with repeated
blocks. They are also employed to determine the spectrum of support sizes of t-
designs with repeated blocks, block intersection numbers and defining sets of t-
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designs. For a thorough discussion of these applications, see [11, 17, 18, 22] and the
references therein.

In the last twenty years trades and their generalization, i.e. (N, t)-partitionable
sets have been successfully used in the study of the existence problem of t-designs
and large sets. This study has led to a powerful approach to the construction of large
sets of t-designs. The method was developed in the nineties of the last century by
Ajoodani-Namini and Khosrovshahi [5] through their work on Hartman’s conjecture
(halving conjecture) on the existence of halving designs. Since then, many existence
results as well as recursive constructions have been obtained using this approach
for t-designs in general and for halving designs and large sets of prime sizes in
particular. Undoubtedly, the most outstanding result achieved by this method is the
proof of halving conjecture for 2-designs by Ajoodani-Namini [1]. We here present
an instructive review of the approach of (N, t)-partitionable sets. For simplicity of
presentation, our treatment is mainly based on trades, i.e. (2, t)-partitionable sets.
We demonstrate how one can use trades to find recursive constructions for halving
designs or large sets of size 2. The general case of (N, t)-partitionable sets is briefly
discussed and it is shown that most of the results for large sets of size 2 can easily
be extended to large sets in general. Trades also provide an algebraic setting for
the study of t-designs. We describe the linear algebraic representation of trades and
present two applications of it.

2 t-Designs and large sets

Let D = (X,B) be a t-(v, k, λ) design. The parameter t is called the strength of
D by some authors. The elements of X are called points and the elements of B are
called blocks. When the blocks of D are distinct, the design is simple. In this paper,
we are mainly interested in simple designs. An easy counting argument shows that
if there exists a t-(v, k, λ) design, then

λi = λ

(
v−i
t−i

)
(
k−i
t−i

) for 0 ≤ i ≤ t,

are integers. These are known as the feasibility conditions. From these conditions it
easily follows that D is an i-(v, k, λi) design for any 0 ≤ i ≤ t. The pair (X, Pk(X))
is a t-(v, k,

(
v−t
k−t

)
) design and is called a complete design. The following observation

is well known.

Lemma 2.1 Let 0 ≤ t ≤ k ≤ v. If there exists a t-(v, k, λ) design which is not
complete, then t < k < v − t.

The main question concerning t-designs is the existence problem: For given
integers v, k, t, λ such that 0 ≤ t ≤ k ≤ v, λ ≥ 1 and satisfying the feasibility
conditions, does there exist a t-(v, k, λ) design? Naturally, the existence problem is
in general intractable. However, it has been dealt with and answered in some special
cases. For a survey of known results, the interested reader may consult [21, 33] and
the references therein.

For some times it was believed that there is no simple t-design for t ≥ 6. Then in
1982 Magliveras and Leavitt constructed the first examples of simple 6-designs [32].
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Later on, in 1986 Kreher and Radziszowski [29] found the smallest possible 6-design,
i.e. a 6-(14,7,4) design. Finally in 1987, Teirlinck [36] attained the striking result
that simple t-designs exist for all t. In [3], Ajoodani-Namini gave a new proof of this
result using a completely different methodology, i.e. the method (N, t)-partitionable
sets which is the subject of this review.

The approach of (N, t)-partitionable sets provides a method to tackle the exis-
tence problem of t-designs through the construction of large sets of t-designs. Based
on this method, some strong recursive constructions for large sets are obtained. Us-
ing these constructions we are able to establish many interesting existence results on
t-designs. The method will be explained in detail in the subsequent sections. Here,
we review some basic facts on large sets. The following theorems are easy to prove
but contain important information.

Theorem 2.2 [3, 27] If there exists an LS[N ](t, k, v), then there exist LS[N ](t −
i, k − j, v − l) for all 0 ≤ j ≤ l ≤ i ≤ t.

Theorem 2.3 There exists an LS[N ](t, k, v) if and only if there exists an LS[N ](t, v−
k, v)

It is well known that a set of necessary conditions for the existence of an
LS[N ](t, k, v) is

N
∣∣∣
(

v − i

k − i

)
for 0 ≤ i ≤ t. (2.1)

These conditions are direct consequences of the feasibility conditions for t-designs.
They can also be deduced as follows. If the large set LS[N ](t, k, v) exists, then for
0 ≤ i ≤ t, the set Pk−i(X \ {1, . . . , i}) is partitioned into N equal parts. Note that
the necessary conditions (2.1) are not always sufficient. A historic example is the
nonexistence of LS[5](2, 3, 7). It is worth to note that by a celebrated result due to
Baranyai, the necessary conditions (2.1) are sufficient for the existence of large sets
LS[N ](1, k, v) [7, 10, 16].

Let N, t, k and v be integers such that N > 1 and 0 ≤ t ≤ k ≤ v. The quadruple
(N ; t, k, v) satisfying (2.1) is called a feasible quadruple. It is possible to give a
better description for feasible quadruples when N is a prime power. Let m and n
be positive integers. We denote the remainder of division m by n by (m)n.

Theorem 2.4 [27] Let p be a prime, α a positive integer and 0 ≤ t ≤ k ≤ v. The
quadruple (pα; t, k, v) is feasible if and only if there exist distinct positive integers `i

(1 ≤ i ≤ α) such that t ≤ (v)p`i < (k)p`i .

Using Theorem 2.4, we can easily determine all the feasible quadruples when
N = p is a prime:

(p; t, k, v) = (p; t,mpz + r, npz + s), (2.2)

where 0 ≤ t ≤ s < r < pz and 0 ≤ m < n. We can also assume that z is the smallest
or the largest number with the properties above to be assured of the uniqueness
of the representation (2.2). We present two examples to show the importance of
Theorem 2.4.
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Example 2.5 By Theorem 2.4, the quadruple (5; 2, 4, 13) is feasible since 2 ≤
(13)5 < (4)5 and also the quadruple (11; 2, 4, 13) is feasible since 2 ≤ (13)11 < (4)11.
Now from (2.1), it is clear that the quadruple (55; 2, 4, 13) is feasible.

Example 2.6 What is the largest value of t for which the parameter set of an
LS[13](t, 9, 18) is feasible? By Theorem 2.4, we must have t ≤ (18)13α < (9)13α and
hence α = 1 and tmax = 5.

3 Trades

We start this section with two examples of trades.

Example 3.1 Let X = {1, 2, 3, 4, 5, 6}. Let

T+
1 = {135, 146, 236, 245},

T−1 = {136, 145, 235, 246}.
Then T1 = (X; T+

1 , T−1 ) is a T(2, 3, 6) trade. Note that by 123 we mean {1, 2, 3},
etc.

Example 3.2 Here is another example of a T(2, 3, 6) trade. Let

T+
2 = {123, 124, 156, 256, 345, 346},

T−2 = {125, 126, 134, 234, 356, 456}.
Then T2 = (X; T+

2 , T−2 ) is a T(2, 3, 6) trade.

Lemma 3.3 A T(t, k, v) trade T is also a T(t′, k, v) trade for any 0 ≤ t′ < t.

By letting t′ = 0 in this lemma, it follows that the number of blocks in T+ is
the same as the number of blocks in T− which is called the volume of T . By letting
t′ = 1, we also observe that the set of points covered by T+ is exactly the same as
the set of points covered by T−. This set is called the foundation of T . We are now
ready to state the following fundamental theorem of trades.

Theorem 3.4 [19] A nontrivial T(t, k, v) trade has foundation size at least k+t+1
and volume at least 2t.

A trade of volume 0 is called the trivial trade. By the above theorem and what
follows, there exists a nontrivial T(t, k, v) trade if and only if t < k < v − t. A
T(t, k, v) trade of foundation size k+ t+1 and volume 2t has a unique structure and
is called the minimal trade. For example, any minimal T(2, 3, 6) trade is isomorphic
to trade T1 of Example 3.1. We also note that a T(0, k, v) trade T = (X;T+, T−)
has a simple structure. In fact the only restriction on T to be a T(0, k, v) is that
T+ and T− contain the same number of blocks. For t = 1, it is easy to construct
trades. However, for t ≥ 2 the construction does not seem to be so trivial. The
problem becomes harder as t increases. Even for t = 3, there are many unsolved
problems on the existence of T(t, k, v) trades. In order to construct trades for any t
there is a method based on the notion of products of trades which is to be presented
in Section 4.
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By definition, the blocks of a trade do not have to be distinct. However, trades
with distinct blocks (simple trades), are of greater importance. Trades T1 and T2 of
Examples 3.1 and 3.2, respectively, are examples of simple trades. There is also a
trade on X = {1, 2, . . . , 6} which in not simple as the following example illustrates.

Example 3.5 Let

T+
3 = {123, 125, 134, 145, 246, 246, 356, 356},

T−3 = {124, 124, 135, 135, 236, 256, 346, 456}.

Then T3 = (X; T+
3 , T−3 ) is a T(2, 3, 6) trade which is not simple.

In this paper we are only interested in simple trades. Hence, hereafter we assume
that all trades are simple.

We need to define the union operation of simple trades. Let Ti = (Xi; T+
i , T−i ) be

T(t, k, vi) trades for i = 1, 2 with disjoint block sets, i.e. (T+
1 ∪T−1 )∩(T+

2 ∪T−2 ) = ∅.
Then, the union of T1 and T2, denoted by T1 + T2 is a T(t, k, v1 + v2) trade defined
as (X1 ∪X2;T+

1 ∪ T+
2 , T−1 ∪ T−2 ).

Example 3.6 The union of disjoint trades T1 and T2 of Examples 3.1 and 3.2,
respectively, gives a T(2, 3, 6) trade T4 = (X; T+

4 , T−4 ), where

T+
4 = {123, 124, 135, 146, 156, 236, 245, 256, 345, 346},

T−4 = {125, 126, 134, 136, 145, 234, 235, 246, 356, 456}.

Since the volume of T4 is equal to
(
6
3

)
/2 = 10, T4 at the same time represents an

LS[2](2, 3, 6) and T+
4 and T−4 are the block sets of 2-(6,3,2) designs.

Let T = (X; T+, T−) be a simple T(t, k, v) trade such that T+ ∪ T− = Pk(X).
Since any t-subset Y of X is contained in

(
v−t
k−t

)
blocks of Pk(X), it follows that

Y is contained in
(
v−t
k−t

)
/2 blocks of T+ (T−). Hence, (X,T+) and (X, T−) are t-

(v, k,
(
v−t
k−t

)
/2) designs and we also have an LS[2](t, k, v). The converse also holds,

of course. Note that the volume of T is
(
v
k

)
/2. A simple t-(v, k,

(
v−t
k−t

)
/2) design is

called a halving design. In our approach to the existence problem of halving designs
it is more natural to consider halving t-(v, k, λ) designs as LS[2](t, k, v) or trades of
volume

(
v
k

)
/2.

4 Product of trades

In this section we present a description of the operation of product of trades
using a number of examples. The following definition is a special case of a general
notion which was introduced in [5]. The general case is considered later in Section
8. Let X1 and X2 be two disjoint sets of cardinality v1 and v2, respectively. For
B1 ⊆ Pk1(X1) and B2 ⊆ Pk2(X2), we let

B1 ∗ B2 = {B1 ∪B2|B1 ∈ B1, B2 ∈ B2}.
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Let Ti = (Xi;T+
i , T−i ) be a T(ti, ki, vi) trade of volume si on Xi for i = 1, 2. Then,

the product of T1 and T2, denoted by T1 ∗ T2, is defined as (X1 ∪X2;S+, S−), where

S+ = (T+
1 ∗ T+

2 ) ∪ (T−1 ∗ T−2 ),
S− = (T+

1 ∗ T−2 ) ∪ (T−1 ∗ T+
2 ).

The following is an important extension theorem concerning the product of
trades. The theorem states that from trades of strength t1 and t2, one can pro-
duce a trade of strength t1 + t2 + 1. Since, here +1 is quite unexpected, we present
the proof to clarify it.

Theorem 4.1 [5] T1 ∗ T2 is a T(t1 + t2 + 1, k1 + k2, v1 + v2) trade of volume 2s1s2.

Proof It is easy to see that S+ and S− are disjoint and |S+| = |S−| = 2s1s2.
Therefore, we only need to show that S+ and S− are (t1 + t2 + 1)-balanced. Let
B be a (t1 + t2 + 1)-subset of X1 ∪X2 and for 1 ≤ i ≤ 2, define Bi = B ∩Xi and
ri = |Bi|. With no loss of generality, we may assume that r1 ≤ t1 (since if ri > ti
for i = 1, 2, then |B| ≥ r1 + r2 + 2, a contradiction).

Let x be the number of occurrences of B1 in T+
1 (T−1 ). Let y and z be the number

of occurrences of B2 in T+
2 and T−2 , respectively. Then clearly, x(y+z) is the number

of occurrences of B in S+ and at the same time the number of occurrences of B in
S−. Hence, the assertion holds. ¤

We also need the following definition. Let B ⊆ Pk1(X1) be of cardinality b and
let T = (X2; T+, T−) be a T(t, k2, v2) trade of volume s. Then, the product of B and
T , denoted by B ∗ T , is defined as (X1 ∪X2;S+, S−), where

S+ = B ∗ T+,

S− = B ∗ T−.

Theorem 4.2 [5] B ∗ T is a T(t, k1 + k2, v1 + v2) trade of volume bs.

One may use Theorem 4.1 to construct trades of any strength t starting with
trades of strength 0. Theorem 4.1 is the basis of our approach in constructing t-
designs and large sets. We illustrate the product of trades and the theorems above
by some examples.

Example 4.3 Let T1 be as given in Example 3.1. Let B = {0}. Then B ∗ T1 =
({0, 1, . . . , 6}; S+, S−) is a T(2, 4, 7) trade by Theorem 4.2, where

S+ = {0135, 0146, 0236, 0245},
S− = {0136, 0145, 0235, 0246}.

Example 4.4 Let T1 be as given in Example 3.1. Let T2 = ({x, y, z, t}; T+
2 , T−2 ) be

a T (1, 2, 4) trade where

T+
2 = {xy, zt},

T−2 = {xz, yt}.
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Then T1 ∗ T2 = ({1, 2, . . . , 6, x, y, z, t}; S+, S−) is a T(4, 5, 10) trade of volume 16,
where

S+ = {135xy, 146xy, 236xy, 245xy, 135zt, 146zt, 236zt, 245zt,

136xz, 145xz, 235xz, 246xz, 136yt, 145yt, 235yt, 246yt},
S− = {135xz, 146xz, 236xz, 245xz, 135yt, 146yt, 236yt, 245yt

136xy, 145xy, 235xy, 246xy, 136zt, 145zt, 235zt, 246zt}.

In the example above, starting with trades of strength 1 and 2, we find a trade
of strength 4. Starting with trades of strength 0 and repeating this approach we can
find a trade of any arbitrary strength t. This is shown in the next example.

Example 4.5 Minimal trades have a unique structure. They can be constructed
through the product of trades. A minimal T (t, k, k + t + 1) trade is in fact the
product of t + 1 trades of strength 0. To be more specific, let

X = {x1, x2, . . . , xt+1, y1, y2, . . . , yt+1, z1, z2, . . . , zk−t−1}

be a (k + t + 1)-set. Let Ti = ({xi, yi}; {xi}, {yi}) be a T (0, 1, 2) trade of volume 1
for i = 1, 2, . . . , t + 1. Then by Theorem 4.1, the product T of Ti (1 ≤ i ≤ t + 1) is a
T (t, t + 1, 2t + 2) trade. Let B = {z1, z2, . . . , zk−t−1}. Then by Theorem 4.2, B ∗ T
is a T (t, k, k + t + 1) trade which is minimal. For example trade T1 of Example 3.1,
is the product of trades ({1, 2}; {1}, {2}), ({3, 4}; {3}, {4}) and ({5, 6}; {5}, {6}).

Trade T2 of Example 3.2 cannot be obtained through the product operation,
since then by Theorem 4.1, it should be the product of a trade of volume 1 and a
trade of volume 3. But by Theorem 3.4, the trade of volume 1 has strength 0 and
it is of the form ({x, y}; {x}, {y}) where x, y ∈ {1, 2, . . . , 6}. Therefore every block
of T2 should contain x or y which is not the case.

Combining two operations of union and product of trades we can construct many
trades. In [8], this method has been used to construct simple T(2, 3, v) trades for
any even foundation size v and any possible volume.

5 Recursive constructions

In this section we make use of the two operations defined in the previous sec-
tions, i.e. the product and the union operations of trades, to obtain some recursive
constructions for large sets of size 2. We note that although the constructions are
given for large sets of size 2, however they can easily be extended to any size N . We
will discuss the general case in Section 8.

A description of the approach is as follows: We construct some block disjoint
T(t, k, v) trades on a v-set X using the product operation and then take their union.
If the resulting trade covers all k-subsets of X, then we have an LS[2](t, k, v). The
following lemma provides a formal statement for a later use.

Lemma 5.1 If there exist T(t, k, v) trades Ti = (X; T+
i , T−i ) (1 ≤ i ≤ n) such that

T+
i ∪ T−i partition Pk(X), then there exists an LS[2](t, k, v).
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Proof Let

T+ =
n⋃

i=1

T+
i

T− =
n⋃

i=1

T−i .

Then T = (X; T+, T−) is a T(t, k, v) trade such that T+ ∪ T− = Pk(X). Therefore,
(X, T+) and (X,T+) are halving designs and we have an LS[2](t, k, v). ¤

The recursive constructions we present in this section stem from some binomial
identities. We start with the following simple one:

(
v

k

)
=

(
v

v − k

)
,

which follows from the trivial one-to-one correspondence between k-subsets and
(v − k)-subsets of a v-set. Translating this to the language of large sets we obtain
Theorem 2.3.

The next identity is
(

v

k

)
=

(
v − 1

k

)
+

(
v − 1
k − 1

)
,

which is obtained by counting the number of k-subsets of a v-set in two ways. The
left hand side is straightforward since the number of k-subsets of a v-set is

(
v
k

)
. The

right hand side follows from counting first k-subsets which do not contain a fixed
point x and then counting k-subsets which contain x. The identity and its proof
suggests the following for large sets.

Theorem 5.2 There exists an LS[2](t, k, v) if and only if there exist an LS[2](t, k, v−
1) and an LS[2](t, k − 1, v − 1).

Proof From LS[2](t, k, v) we obtain an LS[2](t, k, v−1) and an LS[2](t, k−1, v−1)
using Theorem 2.2.

For the converse, let X be a (v− 1)-set and x 6∈ X. From the assumption, there
is a T(t, k, v) trade T1 = (X ∪ {x}; T+

1 , T−1 ) such that T+
1 ∪ T−1 = Pk(X) and also

a T(t, k − 1, v − 1) trade T2 = (X; T+
2 , T−2 ) such that T+

2 ∪ T−2 = Pk−1(X). Let
T3 = {x} ∗ T2. Then by Theorem 4.2, T3 is a T(t, k, v) trade. Note that T+

i and T−i
(i = 1, 3) partition Pk(X ∪ {x}). Now from Lemma 5.1 we obtain an LS[2](t, k, v).

¤

The following theorem is a consequence of Theorem 5.2 and an induction argu-
ment.

Theorem 5.3 If there exist LS[2](t, k + i, v) for all 0 ≤ i ≤ l, then there exist
LS[2](t, k + i, v + j) for all 0 ≤ j ≤ i ≤ l.
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The following identity is more involved:
(

v + 1
a + b + 1

)
=

v−b∑

i=a

(
i

a

)(
v − i

b

)
.

It is obtained using the double counting suggested by the following lemma.

Lemma 5.4 We have

Pa+b+1({1, 2, . . . , v+1}) =
v−b⋃

i=a

(Pa({1, 2, . . . , i})∗{i+1}∗Pb({i+2, i+3, . . . , v+1}).

Proof Sort (a + b + 1)-subsets of {1, 2, . . . , v + 1} in the lexicographic order and
partition them by looking at the elements in the position a + 1. ¤

We demonstrate by an example how the lemma can be utilized to construct large
sets.

Example 5.5 We construct an LS[2](2, 3, 10). To do this we first construct an
LS[2](2, 7, 10) and then using Theorem 2.3 we obtain an LS[2](2, 3, 10). Let a = b = 3
and v = 9 in Lemma 5.4 and let X = {1, 2, . . . , 10}. We have

P7(X) =
6⋃

i=3

Bi,

where

B3 = P3({1, 2, 3}) ∗ {4} ∗ P3({5, 6, . . . , 10},
B4 = P3({1, 2, 3, 4}) ∗ {5} ∗ P3({6, 7, . . . , 10},
B5 = P3({1, 2, . . . , 5}) ∗ {6} ∗ P3({7, 8, 9, 10},
B6 = P3({1, 2, . . . , 6}) ∗ {7} ∗ P3({8, 9, 10}.

We show that there are T(2, 7, 10) trades Ti = (X;T+
i , T−i ) for i = 3, 4, 5, 6 such that

T+
i ∪T−i = Bi and hence by Lemma 5.1, there is an LS[2](2, 7, 10). In Example 3.6, we

constructed an LS[2](2, 3, 6). From this and Theorem 2.2, we obtain an LS[2](1, 3, 5)
and an LS[2](0, 3, 4). From LS[2](2, 3, 6) we find a T(2, 3, 6) trade T1 = (Y ;T+

1 , T−1 ),
where Y = {5, 6, . . . , 10}. Now let T3 = P3({1, 2, 3}) ∗ {4} ∗T1 which is, by Theorem
4.2, a T(2, 7, 10) trade. T6 is constructed in the same way. From LS[2](0, 3, 4) we find
a T(0, 3, 4) trade T1 = (Y ; T+

1 , T−1 ), where Y = {1, 2, 3, 4} and from LS[2](1, 3, 5)
we find a T(1, 3, 5) trade T2 = (Z; T+

2 , T−2 ), where Z = {6, 7, . . . , 10}. Now let
T4 = T1 ∗ {5} ∗ T2 which is, by Theorems 4.1 and 4.2, a T(2, 7, 10) trade. T5 is
constructed in a similar way.

The partition given by Lemma 5.4, has been used to obtain a recursive construc-
tion for large sets of prime sizes in [34].

Here is another example of a useful binomial identity:
(

u + v + 1
k

)
=

k∑

i=0

(
u− i

k − i

)(
v + i

i

)
,

with a proof given in the next lemma.
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Lemma 5.6 Let X = {1, . . . , u + v + 1} and let Xj = {1, . . . , j} and Yj = X \Xj

for j = 1, . . . , u + v + 1. Assume that

Bi = Pk−i(Xu−i) ∗ Pi(Yu−i+1), 0 ≤ i ≤ k.

Then the sets Bi partition Pk(X).

Proof Let 0 ≤ j < i ≤ k and A ∈ Bi. Then |A ∩Xu−i| = k − i and

|A ∩Xu−j | ≤ |A ∩Xu−i|+ |Xu−j \Xu−i| − 1
= k − j − 1.

Therefore, A 6∈ Bj . It yields that all Bi are mutually disjoint.
Now let A ∈ Pk(X). Let 0 ≤ i ≤ k be the smallest integer such that |A∩Xu−i| ≥

k − i. Then |A ∩Xu−i+1| ≤ k − i + 1 and therefore,

k − i ≤ |A ∩Xu−i|
≤ |A ∩Xu−i+1|
≤ k − i.

Hence, |A ∩Xu−i| = |A ∩Xu−i+1| = k − i and A ∈ Bi. ¤

An extension of Lemma 5.6 is given in [2] (see also [25]). For our purpose, this
simplified version is well suited. Before presenting the construction, we give an
example.

Example 5.7 We construct an LS[2](2, 3, 10) from an LS[2](2, 3, 6) using the par-
tition given in Lemma 5.6 (compare to the construction given in Example 5.5). Let
u = 6, v = 4 and k = 3 in Lemma 5.6 and let X = {1, 2, . . . , 10}. We have

P3(X) =
3⋃

i=0

Bi,

where

B0 = P3({1, 2, . . . , 6}),
B1 = P2({1, 2, . . . , 5}) ∗ P1({7, 8, 9, 10}),
B2 = P1({1, 2, 3, 4}) ∗ P2({6, 7, . . . , 10}),
B3 = P3({5, , 6, . . . , 10}).

We show that there are T(2, 3, 10) trades Ti = (X;T+
i , T−i ) for i = 0, 1, 2, 3 such

that T+
i ∪T−i = Bi and hence by Lemma 5.1, there is an LS[2](2, 3, 10). In Example

3.6, we constructed an LS[2](2, 3, 6). From this and Theorem 2.2, we obtain an
LS[2](1, 2, 5) and an LS[2](0, 1, 4). From LS[2](2, 3, 6) we find a T(2, 3, 6) trade T0 =
(Y ; T+

0 , T−0 ), where Y = {1, 2, . . . , 6}. Similarly, we construct a T(2, 3, 6) trade
T3 = (Z; T+

3 , T−3 ), where Z = {5, 6, . . . , 10}. From LS[2](1, 2, 5) we have a T(1, 2, 5)
trade T4 = ({1, 2, . . . , 5};T+

4 , T−4 ) and from LS[2](0, 1, 4) we find a T(0, 1, 4) trade
T5 = ({7, 8, 9, 10}; T+

5 , T−5 ). Now let T1 = T4 ∗ T5 which by Theorem 4.1, is a
T(2, 3, 10) trade. T2 is constructed in the same way.
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Now using the partition provided by Lemma 5.6, we present an important recur-
sive construction.

Theorem 5.8 [5] If LS[2](t, i, v + i) exist for all t + 1 ≤ i ≤ k and an LS[2](t, k, u)
also exists, then LS[2](t, k, u + l(v + 1)) exist for all l ≥ 1.

Proof It suffices to prove the theorem for l = 1. Then the general case easily
follows by an induction on l.

Consider the partition given in Lemma 5.6. We show that there exist T(t, k, u +
v + 1) trades Ti = (X; T+

i , T−i ) for 1 ≤ i ≤ k such that T+
i ∪ T−i = Bi and hence by

Lemma 5.1, there is an LS[2](t, k, u + v + 1).
Let 0 ≤ i ≤ k. Recall that

Bi = Pk−i(Xu−i) ∗ Pi(Yu−i+1).

First assume that 0 ≤ i ≤ t. By LS[2](t, k, u) which exists by the assumption
and Theorem 2.2, we acquire LS[2](t − i, k − i, u − i) and from this we obtain a
T(t − i, k − i, u − i) trade T = (Xi;T+, T−) such that T+ ∪ T− = Pk−i(Xu−i). By
LS[2](t, t + 1, v + t + 1) which comes from the assumption and Theorem 2.2, we also
obtain an LS[2](i−1, i, v + i). Since |Yu−i+1| = v + i, there is a T(i−1, i, v + i) trade
T ′ = (Yu−i+1; T ′+, T ′−) such that T ′+∪T ′− = Pi(Yu−i+1). Now let Ti = T ∗T ′ which
is a T(t, k, u + v + 1) trade by Theorem 4.1. Next let i > t. By the assumption we
have an LS[2](t, i, v+i) and so there is a T(t, i, v+i) trade T = (Yu−i+1;T+, T−) such
that T+ ∪ T− = Pi(Yu−i+1). Now let Ti = Pk−i(Xu−i) ∗ T which is T(t, k, u + v + 1)
trade by Theorem 4.2. ¤

More recursive constructions have been found using this approach. The reader
is referred to [2, 3, 25, 27, 34]. In Section 8, we return to these constructions when
we mention large sets of any size.

6 Halving designs

In Section 3, we observed that halving t-(v, k, λ) designs, large sets LS[2](t, k, v)
and T(t, k, v) trades of volume

(
v
k

)
/2 are in principle the same objects. In the sequel,

we consider LS[2](t, k, v) as halving designs.
From (2.1), we recall that the parameters of an LS[2](t, k, v) satisfy the following

necessary conditions:

2
∣∣∣
(

v − i

k − i

)
, 0 ≤ i ≤ t. (6.1)

A triple (t, k, v) satisfying (6.1) is called feasible. From Theorem 2.4, we have the
following lemma.

Lemma 6.1 Let 0 ≤ t ≤ k ≤ v. Then (t, k, v) is feasible if and only if there is a
positive integer z such that t ≤ (v)2z < (k)2z .

The above characterization can be rephrased as follows.

Lemma 6.2 Let 0 ≤ t ≤ k ≤ v. Then (t, k, v) is feasible if and only if k = m2z + r
and v = n2z + s for some integers r, s, z, m, n such that t ≤ s < r < 2z.



Trades and t-designs 12

A long-standing conjecture of Hartman [16] known as the halving conjecture
states that the necessary conditions (6.1) are sufficient for the existence of an
LS[2](t, k, v). Formally we have the following.

Halving conjecture Let 0 ≤ t ≤ k ≤ v. Then there exists an LS[2](t, k, v) if and
only if

2
∣∣∣
(

v − i

k − i

)
, 0 ≤ i ≤ t.

Along this line, the first author (GBK) proposed its analogue for large sets of size 3
[4].

Conjecture Let 0 ≤ t ≤ k ≤ v. Then there exists an LS[3](t, k, v) if and only if

3
∣∣∣
(

v − i

k − i

)
, 0 ≤ i ≤ t.

For some results concerning this conjecture, see [26, 34].
In spite of some results concerning the existence of halving designs, the conjecture

is still wide open and seems to be far from being resolved in the near future. The
following theorem which follows from the recursive constructions given in Section 5
and an induction argument provides a strategy to tackle halving conjecture. The
large sets needed in the following theorem are called root cases [27].

Theorem 6.3 [1] Let t, k and s be positive integers such that 2s− 1 ≤ t < 2s+1− 1
and t < k. Suppose that for every j and n such that 0 ≤ j ≤ [t/2] and t + 1 ≤
2n + j ≤ k, there exists an LS[2](t, 2n + j, 2n+1 + t). Then for any integer v > k
such that the triple (t, k, v) is feasible, there exists an LS[2](t, k, v).

The most outstanding result on halving designs is due to Ajoodani-Namini which
establishes the halving conjecture for t = 2 in [1]. By the theorem above in order to
prove the conjecture for t = 2, it suffices to find two infinite families LS[2](2, 2n +
1, 2n+1 + 2) and LS[2](2, 2n, 2n+1 + 2). In fact both families exist. The existence of
the first family is a result of two well known theorems. By Baranyai’s theorem [7],
there exists an LS[2](1, 2n, 2n+1 + 1) and by Alltop’s theorem [6] it can be extended
to LS[2](2, 2n + 1, 2n+1 + 2). Ajoodani-Namini constructed the second family using
the approach of products of trades [1]. His construction is rather complicated and
leaves little hope for an extension to higher values of t. For t > 2, there are some
partial results. For t = 3, the conjecture has been settled for infinitely many values
of k [2, 25]. For some other results on small halving designs, see [30].

Now we present a general view or a road map on how to attack halving conjecture:
One way is to tackle the problem for any given t. In this scenario, for the settlement
of the conjecture for given t, by Theorem 6.3, one has to construct the root cases
LS[2](t, 2n + j, 2n+1 + t), where 0 ≤ j ≤ t/2. The other possible way, for our
ambitious champion, is to construct another class of root cases, namely LS[2](2n −
2, 2n − 1, 2n+1 − 2) which resolves halving conjecture for all t [26]. We note that
from this class, large sets are known only for n = 1, 2, 3 [13, 24, 29, 31].



Trades and t-designs 13

7 N-Legged trades

In this section we discuss a generalization of trades recently called N -legged
trades. We note that (N, t)-partitionable sets which will be presented in the next
section are in fact simple N -legged trades and have been utilized in recursive con-
structions of large sets in the past.

Let v, k and t be integers such that v ≥ k ≥ t ≥ 0 and let X be a v-set. A
T [N ](t, k, v) trade (briefly N -legged trade), is a pair T = (X, {T1, T2, . . . , TN}) such
that for i 6= j, (X, {Ti, Tj}) is a T(t, k, v) trade. For the sake of simplicity, we write
T = (X;T1, T2, . . . , TN ). Note that any LS[N ](t, k, v) is in fact a T[N ](t, k, v) trade,
however the converse is not true. We present some examples. The first two ones are
taken from [18].

Example 7.1 Let X = {1, 2, . . . , 7}. Let

T1 = {123, 167, 247, 256, 346, 357},
T2 = {127, 136, 235, 246, 347, 567},
T3 = {126, 137, 234, 257, 356, 467}.

Then (X; T1, T2, T3) is a T[3](2, 3, 7) trade.

Example 7.2 Let X = {1, 2, . . . , 8}. Let

T1 = {123, 145, 167, 248, 257, 346, 378, 568},
T2 = {124, 136, 157, 237, 258, 348, 456, 678},
T3 = {125, 137, 146, 234, 278, 368, 458, 567},
T4 = {127, 134, 156, 238, 245, 367, 468, 578}.

Then (X; T1, T2, T3, T4) is a T[4](2, 3, 8) trade.

Example 7.3 Let X = {1, 2, . . . , 9}. Let

T1 = {124, 138, 157, 169, 237, 259, 268, 349, 356, 458, 467, 789},
T2 = {129, 136, 145, 178, 235, 248, 267, 347, 389, 469, 568, 579},
T3 = {123, 148, 159, 167, 249, 256, 278, 346, 358, 379, 457, 689},
T4 = {126, 135, 147, 189, 234, 258, 279, 369, 378, 459, 468, 567},
T5 = {128, 137, 149, 156, 239, 246, 257, 345, 368, 478, 589, 679},
T6 = {125, 134, 168, 179, 238, 247, 269, 359, 367, 456, 489, 578},
T7 = {127, 139, 146, 158, 236, 245, 289, 348, 357, 479, 569, 678}.

Then (X; T1, T2, . . . , T7) is a T[7](2, 3, 9) trade. Note that (X,Ti) is a 2-(9,3,1) design
and hence we also have an LS[9](2, 3, 9).

As an analogue of Lemma 3.3, we have the following lemma for N -legged trades.

Lemma 7.4 A T[N ](t, k, v) trade T is also a T[N ](t′, k, v) trade for any 0 ≤ t′ < t.
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Let T = (X;T1, T2, . . . , TN ) be a T[N ](t, k, v) trade. If we take t′ = 0 in this
lemma, then we find that the number of blocks in Ti for 1 ≤ i ≤ N is fixed and is
called the volume of T . By taking t′ = 1, it turns out that the set of points covered
by any Ti is the same. This set is called the foundation of T . Trades with distinct
blocks are said to be simple.

Not much is known about N -legged trades. In [14] some computational results
for N -legged trades with t = 2 and k = 3 were obtained. In [12], 3-legged trades
have been studied. Here, we briefly review the results of [12]. First no analogue of
Theorem 3.4 for N -legged trades is known. It is shown that the minimum foundation
size of a simple T[3](2, 3, v) trade is 7. In fact there exists exactly one simple
T[3](2, 3, 7) trade which has volume 6 and is given in Example 7.1. There are
exactly 7 nonisomorphic simple T[3](2, 3, 8) trades with foundation size 8. Three of
these are of volume 8, one of volume 10 and five of volume 12. Also the maximum
possible volume for simple T[3](2, 3, v) trades are found for v ≡ 1, 3, 4 (mod 6) and
v ≡ 2 (mod 9).

There are many questions concerning N -legged trades. The main question is
about the minimum volume and minimum foundation size of a T[N ](t, k, v).

It is possible to extend the definition of product of trades to N -legged trades.
However, we think that it is more natural to consider the product operation in the
context of (N, t)-partitionable sets. We discuss this matter in the next section.

8 (N, t)-Partitionable sets

A powerful approach for the construction of large sets is obtained through the
notion of (N, t)-partitionable sets which was first introduced in [5]. The notion of
(N, t)-partitionable sets is a generalization the notion of trades and indeed they are
equivalent to simple N -legged trades discussed in the previous section.

Let v, k and t be integers such that v ≥ k ≥ t ≥ 0 and let X be a v-set. Let
B1,B2 ⊆ Pk(X). We say that B1 and B2 are t-equivalent if every t-subset of X
appears in the same number of blocks of B1 and B2. If there exists a partition
of B ⊆ Pk(X) into N mutually t-equivalent subsets, then B is called an (N, t)-
partitionable set. It is easily seen that B can be used to obtain a T[N ](t, k, v) trade.
The legs of the trade will be the parts of partition of B. Here is an example.

Example 8.1 This example is from [12]. Let

B = {123, 124, 125, 136, 137, 145, 146, 157, 167, 234, 237, 248,

257, 258, 278, 346, 348, 368, 378, 456, 458, 567, 568, 678}.

Consider the following partition of B:

T1 = {123, 145, 167, 248, 257, 346, 378, 568},
T2 = {124, 136, 157, 237, 258, 348, 456, 678},
T3 = {125, 137, 146, 234, 278, 368, 458, 568}.

T1, T2 and T3 are mutually 2-equivalent. Therefore, B is (3,2)-partitionable set. Note
that ({1, 2, . . . , 8}; T1, T2, T3) is a T[3](2, 3, 8) trade.
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Now we present two important lemmas concerning (N, t)-partitionable sets. The
first is a trivial one while the other is unexpected. Let X1 and X2 be two disjoint
sets and let Bi ⊆ Pki

(Xi) for i = 1, 2. Then from Section 4 recall that

B1 ∗ B2 = {B1 ∪B2| B1 ∈ B1, B2 ∈ B2}.

Lemma 8.2 [5] (i) t-equivalence implies i-equivalence for all 0 ≤ i ≤ t.
(ii) The union of disjoint (N, t)-partitionable sets is again an (N, t)-partitionable
set.

Lemma 8.3 [5] Let X1 and X2 be two disjoint sets and let Bi ⊆ Pki
(Xi) for i = 1, 2.

Suppose that B1 is (N, t1)-partitionable. Then

(i) B1 ∗ B2 is (N, t1)-partitionable.
(ii) If B2 is also (N, t2)-partitionable, then B1 ∗ B2 is (N, t1 + t2 + 1)-partitionable.

We now explain the construction which is used in Lemma 8.3 (ii). Let T1, T2, . . . , TN

be a partition of B1 into N mutually t1-equivalent subsets and let S1, S2, . . . , SN be
a partition of B2 into N mutually t2-equivalent subsets. We need to find a partition
R1, R2, . . . , RN of B1 ∗B2 into N mutually (t1 + t2 +1)-equivalent subsets. Consider
the partition Ti ∗ Sj , 1 ≤ i, j ≤ N of B1 ∗ B2. Let L be a Latin square of order n
with entries from {1, 2, . . . , N}. Define

Rf =
⋃

Lij=f

Ti ∗ Sj ,

for 1 ≤ f ≤ N . We give an example taken from [18] to clarify the construction.

Example 8.4 Let

B1 = {1, 2, 3},
B2 = {45, 46, 47, 56, 57, 67}.

B1 is (3,0)-partitionable with the partition T1 = {1}, T2 = {2} and T3 = {3}. B2

is (3,1)-partitionable with the partition S1 = {45, 67}, S2 = {46, 57} and S3 =
{47, 56}. Consider the following Latin square:

1 2 3
3 1 2
2 3 1

Then we have

R1 = (T1 ∗ S1) ∪ (T2 ∗ S2) ∪ (T3 ∗ S3) = {145, 167, 246, 257, 347, 356},
R2 = (T1 ∗ S2) ∪ (T2 ∗ S3) ∪ (T3 ∗ S1) = {146, 157, 247, 256, 345, 367},
R3 = (T1 ∗ S3) ∪ (T2 ∗ S1) ∪ (T3 ∗ S2) = {147, 156, 245, 267, 346, 357}.

R1, R2 and R3 provide a partition of B1 ∗ B2 into 3 mutually 2-equivalent subsets.
Note that ({1, 2, . . . , 7}; R1, R2, R3) is isomorphic to the unique T[3](2, 3, 7) trade
given in Example 7.1.



Trades and t-designs 16

The approach of (N, t)-partitionable sets for constructing large sets is based on
Lemmas 8.2 and 8.3. Suppose that we are looking for an LS[N ](t, k, v) on a v-set
X. We try to partition Pk(X) in such a way that each part of the partition is an
(N, t)-partitionable set. If this done, then by Lemma 8.2, Pk(X) will be an (N, t)-
partitionable set which means that we have obtained an LS[N ](t, k, v). We have
previously used the approach for large sets of size 2 in Section 5. Here, we give an
example of large sets of size 3 taken from [26].

Example 8.5 We construct an LS[3](2, 12, 29) from LS[3](2, 3, 11), LS[3](2, 7, 15),
LS[3](2, 8, 16) and LS[3](2, 12, 20). Note that there is known no other construction
method for LS[3](2, 12, 29). Let X = {1, 2, . . . , 29} and let u = 20, v = 8 and k = 12
in Lemma 5.6. Then we have

P12(X) =
12⋃

i=0

Bi,

where

Bi = P12−i({1, . . . , 20− i}) ∗ Pi({22− i, . . . , 29}), 0 ≤ i ≤ 12.

B0 and B12 are (3,2)-partitionable sets since there exists an LS[3](2, 12, 20). By The-
orem 2.2, there exist LS[3](1, 2, 10), LS[3](0, 1, 9), LS[3](1, 6, 14), LS[3](0, 10, 18) and
LS[3](1, 11, 19). Using Lemma 8.3, it is an easy task to see that all the remaining Bi

are also (3,2)-partitionable sets. For example, consider B2 and B3. P10({1, . . . , 18})
is (3,0)-partitionable since there is an LS[3](0, 10, 18). P2({20, . . . , 29}) is (3,1)-
partitionable since LS[3](1, 2, 10) exists. Now by Lemma 8.3, B2 is (3,2)-partitionable.
By the existence of an LS[3](2, 3, 11), P3({19, . . . , 29}) is a (3,2)-partitionable set and
so is B3 by Lemma 8.3. The remaining Bi are dealt with in similar ways. Hence, by
Lemma 8.2, P12(X) is (3,2)-partitionable and so an LS[3](2, 12, 29) is constructed.

The recursive constructions for large sets of size 2 given in Section 5 are easily
extended to large sets of any size. More constructions can be found in [2, 3, 27, 25,
34]. Here we present two important constructions by Ajoodani-Namini [3] for large
sets of prime size p.

Theorem 8.6 [3] If there exists an LS[p](t, k, v − 1), then there exist LS[p](t +
1, pk + i, pv + j) for all 0 ≤ j < i ≤ p− 1.

Theorem 8.7 [3, 35] If there exists an LS[p](t, k, v−1), then there exist LS[p](t, pk+
i, pv + j) exist for all −p ≤ j < i ≤ p− 1.

The above theorems could be utilized to produce a large number of infinite fam-
ilies of large sets. As Ajoodani-Namini [2] has noted, these theorems are unique in
design theory in the sense that they impose no further conditions on the parameters.
By this, we mean that given any large set (whatever the parameters are), using these
theorems one can construct infinite families of large sets. The reason for it is that
any large set of size N leads to a large set of size p for any prime divisor p of N .
Theorem 8.6 is specially interesting since it proves Teirlinck’s theorem [36] on the ex-
istence of simple t-designs for all t. It also has the extra merit that one can produce
t-designs on point sets which are very small compared to those of Teirlinck’s.
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9 A linear algebraic approach to trades and designs

In this section we present a linear algebraic approach to the study of trades and
designs. By giving two applications we show the usefulness of this representation of
trades. Let 0 ≤ t ≤ k ≤ v − t and and let X be a v-set. Order Pt(X) and Pk(X)
lexicographically (or with any other ordering). Let Wtk(v) be a

(
v
t

) × (
v
k

)
(0, 1)-

matrix whose rows and columns are indexed by the elements of Pt(X) and Pk(X),
respectively, and for a t-subset T and a k-subset K, Wtk(v)(T, K) = 1 if and only if
T ⊆ K. The matrix Wtk(v) is an inclusion matrix which is often called the Wilson
matrix since it was first introduced and used by Wilson [37]. We simply write Wtk

instead of Wtk(v) if there is no risk of confusion.
Given a collection of elements of Pk(X), a

(
v
k

)
column vector F can be associated

with it: F = (f1, f2, . . . , f(v
k)

) where fi is the frequency of ith element of Pk(X) in

this collection. Conversely, for a given column vector F of size
(
v
k

)
with nonnegative

integers, a collection of the elements of Pk(X) can be associated with it by taking
fi copies of the ith element of Pk(X). Also for a given S = {S1, S2}, where S1 and
S2 are two disjoint collections of elements each from Pk(X), an integral

(
v
k

)
column

vector F can be associated with it whose ith entry is fi if the ith block of Pk(X)
appears fi times in S1 or −fi if the ith block of Pk(X) appears fi times in S2.

A
(
v
k

)
column vector F with nonnegative integers represents a t-design if WtkF =

λJ , where λ is a positive integer and J is the all one vector. If we let negative entries
in F , then we have a signed t-design.

A
(
v
k

)
integral column vector F is a T(t, k, v) trade if and only if WtkF = 0.

The positive components of F identify the frequencies of the blocks in T+ (T−)
and the negative components (sign ignored) identify the frequencies of the blocks in
T− (T+). If F1 and F2 represent two T(t, k, v) trades based on X, then F1 + F2 as
well as nF1 (n ∈ Z) are also trades. Therefore, the set of all T(t, k, v) trades forms
a free Z-module. It is well known that the rank of Wtk is

(
v
t

)
and the null space of

Wtk that generates all T(t, k, v) trades has dimension
(
v
k

)− (
v
t

)
[15, 37].

If F1 and F2 represent two t-(v, k, λ) designs based on X, then F1−F2 is a trade.
Therefore, in principle all t-(v, k, λ) designs can be generated by using trades and
any given signed t-(v, k, λ) design. To do this we need to find first a signed t-(v, k, λ)
design F (which is easy to find) and then combining it with all trades G such that
F + G is a nonnegative vector. This shows the importance of trades in the study of
t-designs and suggests that to study t-designs one may investigate trades.

Different bases have been presented in the literature for the Z-module of trades.
A survey is given in [23]. In [20] a triangular basis for trades is given. All trades
in this basis are minimal. This paper also gives an algorithm based on this basis to
find halving designs in triple systems.

An interesting basis for trades is the so called the standard basis given in [23]
which follows from the basis given in [20]. The

(
v
k

)−(
v
t

)
trades of the standard basis

constitute the columns of a matrix Mv
t,k which has the following block structure:

Mv
t,k =

[
I

Mv
t,k

]
.

The rows corresponding to I are indexed by the so-called starting blocks and the
remaining rows by the non-starting blocks [20]. This basis has many interesting
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properties yet to be explored. The standard basis for T(2, 3, 6) trades is given in
Table 1. In this table the first column shows the starting and non starting blocks,
the next five columns show the five trades in the basis and the last column is a
signed 2-(6,3,2) design obtained in a way described in the following.

Table 1: The standard basis for T(2, 3, 6) trades

123 1 0
124 1 0
125 1 0
134 1 0
135 1 0

126 −1 −1 −1 2
136 −1 −1 −1 2
145 −1 −1 −1 −1 −1 3
146 1 1 1 −1
156 1 1 1 −1
234 −1 −1 −1 2
235 −1 −1 −1 2
236 1 1 1 1 1 −2
245 1 1 1 −1
345 1 1 1 −1
246 −1 1
256 −1 1
346 −1 1
356 −1 1
456 −1 1

We present two applications of the standard basis. Note that the feasibility
conditions for the existence of a t-(v, k, λ) design given in Section 2 are sufficient for
the existence of a signed t-(v, k, λ) design [15, 28, 37]. Signed designs are useful in
the study of t-designs. To construct designs using the so called trade off method,
one starts with a signed design and then tries to eliminate negative entries by adding
suitable trades. We show how the standard basis is used to produce a signed design.
To find a signed t-(v, k, λ) design, it is enough to sum up all the columns of Mv

t,k,
then subtract it from the vector J and finally divide the resulting vector by a suitable
coefficient [28]. Note that all entries in this signed design corresponding to starting
blocks are zero. This signed design can sometimes be converted to a t-design by
adding a suitable trade. As an example a signed 2-(6,3,2) design obtained by this
method is shown in the last column of Table 1.

A halving design is equivalent to a trade F whose entries are ±1. Therefore,
to find a halving design one can use the standard basis and take a combination
of columns with coefficients 1 or −1 and then check whether the resulting trade is
simple and has no zero entry. This approach is effective since the standard basis has
the recursive structure

Mv
t,k =




I 0
0 I

Mv−1
t−1,k−1 0

N Mv−1
t,k


 ,
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which suggests that to find a halving t-(v, k, λ) design through extending halving
(t− 1)-(v − 1, k − 1, λ) designs. A detailed description of this method can be found
in [13] where it has been successfully used to obtain new 6-(14,7,4) designs.

10 Concluding remarks

In this paper we have presented a rather pedagogical review of the application
of trades in constructing halving t-designs. We have also considered the notion
of (N, t)-partitionable sets as a generalization of trades and have shown how some
powerful recursive constructions can be obtained for large sets of t-designs. We
hope that we have been able to draw the attention of the reader to the power of the
approach of (N, t)-partitionable sets. There are some open problems to undertake
further research in the future. The first problem is to find other binomial identities
besides the ones given in Section 5 which correspond to recursive constructions for
large sets. Halving conjecture for t = 3 is another problem which seems to be hard.
One may think that the similar problem for large sets of 2-designs of size 3 is more
accessible. In order to resolve this problem, one should establish the existence of
large sets LS[3](2, 3n + j, 3n+1 + 2) for j = 0, 1, 2 and for any n > 3. Concerning N -
legged trades, the main question is to determine the minimum volume and minimum
foundation size of a T[N ](t, k, v).
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