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Let G and F be graphs, and let H ⊂ G be a spanning subgraph of G. The graph H is
called weakly F -saturated in G, if there exists a sequence of graphs H = H0 ⊂ · · · ⊂ Hm = G,
where each Hi is obtained from Hi−1 by adding an edge that belongs to a copy of F in Hi. In
other words, all the edges of G\H can be recovered one by one in a way such that each edge
creates a new copy of F . The smallest number of edges in a weakly F -saturated subgraph of
G is called the weak F -saturation number of G and is denoted by wsat(G,F ). This notion
was first introduced by Bollobás in 1968 [3].

The exact value of wsat(Kn, Ks) (here, as usual, Kn is a complete graph on n vertices)
was achieved by Lovász [9]. He showed that if n ≥ s ≥ 2, then

wsat(Kn, Ks) =

(
n

2

)
−
(
n− s+ 2

2

)
.

The next natural graph to consider on the role of F is a complete bipartite graph Ks,t.
However, the value of wsat(Kn, Ks,t) for an arbitrary choice of parameters is still unknown.
The most general result was obtained by Kalai [4] in 1985 and Kronenberg, Martins and
Morrison [8] in 2020. They found the exact value only for balanced bipartite graphs: for
t ≥ 2 and n ≥ 3t− 3

wsat(Kn, Kt,t) = (t− 1)(n+ 1− t/2),

wsat(Kn, Kt,t+1) = (t− 1)(n+ 1− t/2) + 1.

Moreover, in [8] general bounds for arbitrary choice of parameters s, t were also obtained:

wsat(Kn, Ks,t) ≤ (s− 1)(n− s) +

(
t

2

)
, t > s ≥ 2, n ≥ 2(s+ t)− 3; (1)

wsat(Kn, Ks,t) ≥ (s− 1)(n− t+ 1) +

(
t

2

)
, t > s ≥ 2, n ≥ 3t− 3. (2)

For s = 1, it is straightforward to show that wsat(Kn, K1,t) =
(
t
2

)
. The case s = 2 appears

to be much more sophisticated, but in [10], it was managed to solve it.
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Theorem 1 For all integers t ≥ 3 and n ≥ t+ 2, the following hold.

• If t is odd or n ≥ 2t− 1, then wsat(Kn, K2,t) = n− 2 +
(
t
2

)
;

• If t is even and n ≤ 2t− 2, then wsat(Kn, K2,t) = n− 1 +
(
t
2

)
.

As usual we denote by G(n, p) the binomial random graph on the vertex set [n] :=
{1, . . . , n}, where every pair of distinct i, j ∈ [n] is adjacent with probability p independently
of the others. Hereinafter, we say that some property holds with high probability, or whp for
short, if its probability tends to 1 as n→∞. In 2017, Korándi and Sudakov [6] proved that,
if s ≥ 3, then wsat(Kn, Ks) is stable, i.e., for constant p ∈ (0, 1), whp

wsat(G(n, p), Ks) = wsat(Kn, Ks),

and ask about the possible threshold for this stability property. We have managed to prove
that the threshold exists, and give nontrivial bounds for its value [2].

Theorem 2 There exists c such that, if p < cn− 2
s+1 (lnn)

2
(s−2)(s+1) , then whp wsat(G(n, p), Ks) 6=

wsat(Kn, Ks). If p > n− 1
2s−3 (lnn)2, then whp wsat(G(n, p), Ks) = wsat(Kn, Ks).

It is natural to ask about the existence of a graph F such that the stability property does
not hold for some constant p. We conjecture that there is no such F .

Conjecture 1 Let p ∈ (0, 1) be constant. Then, for every F , whp

wsat(G(n, p), F ) = wsat(Kn, F ). (3)

In the favor of this conjecture we have found a sufficient condition for the stability
property [5]. Below, we denote by δ(H) the minimum degree of graph H. Without loss of
generality, we set V (Kn) = [n].

Theorem 3 Let F be a graph without isolated vertices, and let p ∈ (0, 1), C ≥ δ(F ) − 1
be constants. For every n ∈ N, let H0

n be a weakly F -saturated subgraph of Kn containing a
set of vertices S0

n ⊂ [n] with |S0
n| ≤ C, such that every vertex from [n] \ S0

n is adjacent to at
least δ(F )− 1 vertices of S0

n. Then whp there exists a subgraph Fn ⊂ G(n, p) which is weakly
F -saturated and Fn has min{|E(G(n, p)), |E(H0

n)|} edges.

This theorem implies the following.
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Corollary 1 Let p ∈ (0, 1) be constant. For an arbitrary graph F without isolated vertices,
whp the equality (3) holds if, for every n ∈ N, there exists a minumum (having wsat(Kn, F )
edges) weakly F -saturated subgraph of Kn with the property described in Theorem 3.

Indeed, the condition in Theorem 3 immediately implies that whp wsat(G(n, p), F ) ≤
wsat(Kn, F ). Since whp every pair of vertices of G(n, p) has at least |V (F )| pairwise adjacent
common neighbors [11], whp G(n, p) is weakly (Kn, F )-saturated implying that the value of
the weak saturation in G(n, p) cannot be less that in Kn.

It is easy to show that Corollary 1 implies that whp the stability property (3) holds
for F = Ks and F = Ks,t for all values of s, t (despite the fact that we do not know the
exact values of wsat(Kn, Ks,t)). Note that due to (1) and (2) whp wsat(G(n, p), Ks,t) =
(s− 1)n+ C(s, t) for some constant C = C(s, t).

Despite the fact that for F = Ks we still do not know the exact threshold for the stability
property (even in the simplest case s = 3), we have found it for stars F = K1,t [5].

Theorem 4 Let t ≥ 3. Denote pt = n− 1
t−1 [lnn]−

t−2
t−1 .

• There exists c > 0 such that, if 1
n2 � p < cpt, then whp wsat(G(n, p), K1,t) 6=

wsat(Kn, K1,t).

• There exists C > 0 such that, if p > Cpt, then whp wsat(G(n, p), K1,t) = wsat(Kn, K1,t).

Note that Theorem 4 does not cover the case t = 2 as well as p = O(1/n2), which are
much easier to handle. First, if t ≥ 3 and p < Q

n2 for some Q > 0, then whp there are no
copies of K1,t−1 in G(n, p), and so whp there is stability only if the number of edges of the
entire graph is exactly

(
t
2

)
, which does not happen whp when p � 1

n2 and has probability

bounded away both from 0 and 1 when q
n2 < p < Q

n2 for some 0 < q < Q. The case t = 2 is
also easy. If p > (1 + ε) lnn

2n
for some ε > 0, then whp wsat(G(n, p), K1,2) = wsat(Kn, K1,2).

If 1
n2 � p < (1 − ε) lnn

2n
, then whp wsat(G(n, p), K1,2) 6= wsat(Kn, K1,2). If q

n2 < p < Q
n2 for

some 0 < q < Q, then

P

[
wsat(G(n, p), K1,2) = wsat(Kn, K1,2)

]
=

P(G(n, p) contains exactly one edge) + o(1) =

(
n

2

)
p(1− p)(

n
2)−1 + o(1)
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is bounded away both from 0 and 1. Finally, if p� 1
n2 , then whp wsat(G(n, p), K1,2) = 0 6=

wsat(Kn, K1,2).

Let us finally note that the asymptotical version of Conjecture 1 is true.

Theorem 5 For every constant p ∈ (0, 1) and every graph F , whp

wsat(G(n, p), F ) = wsat(Kn, F )(1 + o(1)).

Let us sketch the proof. Fix a graph F and constant p ∈ (0, 1). First of all let us recall
that (see [1]) there exists a constant cF such that wsat(Kn, F ) = (cF + o(1))n and that
cF > 0 if and only if F does not contain vertices with degree 1. If F contains a vertex with
degree 1, then it is easy to see that there exists a constant wF such that whp

wsat(G(n, p), F ) = wsat(Kn, F ) = wF .

Assume that F has s ≥ 3 vertices, and none of them has degree 1. It is very well known [7]
that G(n, p) admits a clique factor with cliques of size log1/p n. In other words, whp there
are disjoint sets V1, . . . , Vm ⊂ [n] such that each Vi has size vi ∈ {blog1/p nc, dlog1/p ne}, and
Vi induces a clique in G(n, p). Using standard arguments, it can be shown that whp Vi may
be chosen in a way such that the bipartite graphs with parts (Vi, Vi+1) are pseudorandom in
the following sense: for all i ∈ [m], there exist disjoint S1

i , S
2
i ⊂ Vi satisfying

• S2
i t S1

i+1 induce cliques in G(n, p);

• every vertex from Vi+1 \ S1
i+1 has at least s − 2 neighbors v1, . . . , vs−2 in Vi such that

each vi is adjacent to all vertices of S1
i+1.

Each induced subgraph G(n, p)[Vi] contains a subgraph Hi with wsat(Kvi , F ) edges. Con-
sider the graph H obtained by the union of Hi and m − 1 complete bipartite graphs with
parts (S2

i , S
1
i+1), i ∈ [m− 1]. Note that H has at most

m(cF + o(1)) log1/p n+ (m− 1)(s− 2)2 = (cF + o(1))n

edges, and that it is weakly F -saturated in G(n, p). It remains to recall that whp G(n, p) is
weakly F -saturated in Kn, and so whp wsat(G(n, p), F ) ≥ wsat(Kn, F ).
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