Weakly saturated subgraphs of random graphs¹ O. Kalinichenko², B. Tayfeh-Rezaie³, M. Zhukovskii²

Let G and F be graphs, and let $H \subset G$ be a spanning subgraph of G. The graph H is called *weakly* F-saturated in G, if there exists a sequence of graphs $H = H_0 \subset \cdots \subset H_m = G$, where each H_i is obtained from H_{i-1} by adding an edge that belongs to a copy of F in H_i . In other words, all the edges of $G \setminus H$ can be recovered one by one in a way such that each edge creates a new copy of F. The smallest number of edges in a weakly F-saturated subgraph of G is called the weak F-saturation number of G and is denoted by weat(G, F). This notion was first introduced by Bollobás in 1968 [3].

The exact value of wsat (K_n, K_s) (here, as usual, K_n is a complete graph on n vertices) was achieved by Lovász [9]. He showed that if $n \ge s \ge 2$, then

wsat
$$(K_n, K_s) = \binom{n}{2} - \binom{n-s+2}{2}.$$

The next natural graph to consider on the role of F is a complete bipartite graph $K_{s,t}$. However, the value of wsat $(K_n, K_{s,t})$ for an arbitrary choice of parameters is still unknown. The most general result was obtained by Kalai [4] in 1985 and Kronenberg, Martins and Morrison [8] in 2020. They found the exact value only for balanced bipartite graphs: for $t \ge 2$ and $n \ge 3t - 3$

wsat
$$(K_n, K_{t,t}) = (t-1)(n+1-t/2),$$

wsat $(K_n, K_{t,t+1}) = (t-1)(n+1-t/2) + 1.$

Moreover, in [8] general bounds for arbitrary choice of parameters s, t were also obtained:

wsat
$$(K_n, K_{s,t}) \le (s-1)(n-s) + {t \choose 2}, \quad t > s \ge 2, \ n \ge 2(s+t) - 3;$$
 (1)

wsat
$$(K_n, K_{s,t}) \ge (s-1)(n-t+1) + \binom{t}{2}, \quad t > s \ge 2, \ n \ge 3t-3.$$
 (2)

For s = 1, it is straightforward to show that $wsat(K_n, K_{1,t}) = {t \choose 2}$. The case s = 2 appears to be much more sophisticated, but in [10], it was managed to solve it.

¹This work was carried out with the support of the Russian Foundation for Basic Research grant No. 20-51-56017 and Iran National Science Foundation under project number 99003814.

²Moscow institute of physics and technology, laboratory of combinatorial and geometric structures

³School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Theorem 1 For all integers $t \ge 3$ and $n \ge t + 2$, the following hold.

- If t is odd or $n \ge 2t 1$, then $wsat(K_n, K_{2,t}) = n 2 + {t \choose 2};$
- If t is even and $n \le 2t 2$, then $wsat(K_n, K_{2,t}) = n 1 + {t \choose 2}$.

As usual we denote by G(n, p) the binomial random graph on the vertex set $[n] := \{1, \ldots, n\}$, where every pair of distinct $i, j \in [n]$ is adjacent with probability p independently of the others. Hereinafter, we say that some property holds with high probability, or whp for short, if its probability tends to 1 as $n \to \infty$. In 2017, Korándi and Sudakov [6] proved that, if $s \geq 3$, then wsat (K_n, K_s) is stable, i.e., for constant $p \in (0, 1)$, whp

$$wsat(G(n, p), K_s) = wsat(K_n, K_s),$$

and ask about the possible threshold for this *stability property*. We have managed to prove that the threshold exists, and give nontrivial bounds for its value [2].

Theorem 2 There exists c such that, if $p < cn^{-\frac{2}{s+1}}(\ln n)^{\frac{2}{(s-2)(s+1)}}$, then whp wsat $(G(n,p),K_s) \neq wsat(K_n,K_s)$. If $p > n^{-\frac{1}{2s-3}}(\ln n)^2$, then whp wsat $(G(n,p),K_s) = wsat(K_n,K_s)$.

It is natural to ask about the existence of a graph F such that the stability property does not hold for some constant p. We conjecture that there is no such F.

Conjecture 1 Let $p \in (0,1)$ be constant. Then, for every F, whp

$$wsat(G(n, p), F) = wsat(K_n, F).$$
(3)

In the favor of this conjecture we have found a sufficient condition for the stability property [5]. Below, we denote by $\delta(H)$ the minimum degree of graph H. Without loss of generality, we set $V(K_n) = [n]$.

Theorem 3 Let F be a graph without isolated vertices, and let $p \in (0,1)$, $C \geq \delta(F) - 1$ be constants. For every $n \in \mathbb{N}$, let H_n^0 be a weakly F-saturated subgraph of K_n containing a set of vertices $S_n^0 \subset [n]$ with $|S_n^0| \leq C$, such that every vertex from $[n] \setminus S_n^0$ is adjacent to at least $\delta(F) - 1$ vertices of S_n^0 . Then whp there exists a subgraph $F_n \subset G(n, p)$ which is weakly F-saturated and F_n has $\min\{|E(G(n, p)), |E(H_n^0)|\}$ edges.

This theorem implies the following.

Corollary 1 Let $p \in (0,1)$ be constant. For an arbitrary graph F without isolated vertices, whp the equality (3) holds if, for every $n \in \mathbb{N}$, there exists a minumum (having wsat (K_n, F) edges) weakly F-saturated subgraph of K_n with the property described in Theorem 3.

Indeed, the condition in Theorem 3 immediately implies that whp wsat $(G(n, p), F) \leq$ wsat (K_n, F) . Since whp every pair of vertices of G(n, p) has at least |V(F)| pairwise adjacent common neighbors [11], whp G(n, p) is weakly (K_n, F) -saturated implying that the value of the weak saturation in G(n, p) cannot be less that in K_n .

It is easy to show that Corollary 1 implies that whp the stability property (3) holds for $F = K_s$ and $F = K_{s,t}$ for all values of s, t (despite the fact that we do not know the exact values of wsat $(K_n, K_{s,t})$). Note that due to (1) and (2) whp wsat $(G(n, p), K_{s,t}) =$ (s-1)n + C(s,t) for some constant C = C(s,t).

Despite the fact that for $F = K_s$ we still do not know the exact threshold for the stability property (even in the simplest case s = 3), we have found it for stars $F = K_{1,t}$ [5].

Theorem 4 Let $t \ge 3$. Denote $p_t = n^{-\frac{1}{t-1}} [\ln n]^{-\frac{t-2}{t-1}}$.

- There exists c > 0 such that, if $\frac{1}{n^2} \ll p < cp_t$, then $whp \operatorname{wsat}(G(n,p), K_{1,t}) \neq \operatorname{wsat}(K_n, K_{1,t})$.
- There exists C > 0 such that, if $p > Cp_t$, then whp wsat $(G(n, p), K_{1,t}) = wsat(K_n, K_{1,t})$.

Note that Theorem 4 does not cover the case t = 2 as well as $p = O(1/n^2)$, which are much easier to handle. First, if $t \ge 3$ and $p < \frac{Q}{n^2}$ for some Q > 0, then whp there are no copies of $K_{1,t-1}$ in G(n,p), and so whp there is stability only if the number of edges of the entire graph is exactly $\binom{t}{2}$, which does not happen whp when $p \ll \frac{1}{n^2}$ and has probability bounded away both from 0 and 1 when $\frac{q}{n^2} for some <math>0 < q < Q$. The case t = 2 is also easy. If $p > (1 + \varepsilon) \frac{\ln n}{2n}$ for some $\varepsilon > 0$, then whp weat $(G(n, p), K_{1,2}) = \text{wsat}(K_n, K_{1,2})$. If $\frac{1}{n^2} \ll p < (1 - \varepsilon) \frac{\ln n}{2n}$, then whp wsat $(G(n, p), K_{1,2}) \neq \text{wsat}(K_n, K_{1,2})$. If $\frac{q}{n^2} for some <math>0 < q < Q$, then

$$\mathsf{P}\Big[\mathsf{wsat}(G(n,p),K_{1,2}) = \mathsf{wsat}(K_n,K_{1,2})\Big] = \mathsf{P}(G(n,p) \text{ contains exactly one edge}) + o(1) = \binom{n}{2}p(1-p)^{\binom{n}{2}-1} + o(1)$$

is bounded away both from 0 and 1. Finally, if $p \ll \frac{1}{n^2}$, then whp wsat $(G(n, p), K_{1,2}) = 0 \neq$ wsat $(K_n, K_{1,2})$.

Let us finally note that the asymptotical version of Conjecture 1 is true.

Theorem 5 For every constant $p \in (0,1)$ and every graph F, whp

$$wsat(G(n, p), F) = wsat(K_n, F)(1 + o(1)).$$

Let us sketch the proof. Fix a graph F and constant $p \in (0, 1)$. First of all let us recall that (see [1]) there exists a constant c_F such that $wsat(K_n, F) = (c_F + o(1))n$ and that $c_F > 0$ if and only if F does not contain vertices with degree 1. If F contains a vertex with degree 1, then it is easy to see that there exists a constant w_F such that whp

$$wsat(G(n, p), F) = wsat(K_n, F) = w_F.$$

Assume that F has $s \geq 3$ vertices, and none of them has degree 1. It is very well known [7] that G(n, p) admits a clique factor with cliques of size $\log_{1/p} n$. In other words, whp there are disjoint sets $V_1, \ldots, V_m \subset [n]$ such that each V_i has size $v_i \in \{\lfloor \log_{1/p} n \rfloor, \lceil \log_{1/p} n \rceil\}$, and V_i induces a clique in G(n, p). Using standard arguments, it can be shown that whp V_i may be chosen in a way such that the bipartite graphs with parts (V_i, V_{i+1}) are pseudorandom in the following sense: for all $i \in [m]$, there exist disjoint $S_i^1, S_i^2 \subset V_i$ satisfying

- $S_i^2 \sqcup S_{i+1}^1$ induce cliques in G(n, p);
- every vertex from $V_{i+1} \setminus S_{i+1}^1$ has at least s-2 neighbors v_1, \ldots, v_{s-2} in V_i such that each v_i is adjacent to all vertices of S_{i+1}^1 .

Each induced subgraph $G(n, p)[V_i]$ contains a subgraph H_i with wsat (K_{v_i}, F) edges. Consider the graph H obtained by the union of H_i and m-1 complete bipartite graphs with parts $(S_i^2, S_{i+1}^1), i \in [m-1]$. Note that H has at most

$$m(c_F + o(1)) \log_{1/p} n + (m - 1)(s - 2)^2 = (c_F + o(1))n$$

edges, and that it is weakly F-saturated in G(n, p). It remains to recall that whp G(n, p) is weakly F-saturated in K_n , and so whp wsat $(G(n, p), F) \ge wsat(K_n, F)$.

References

- N. Alon, An extremal problem for sets with applications to graph theory, J. Combin. Theory Ser. A (1985) 40(1): 82–89.
- [2] M.R. Bidgoli, A. Mohammadian, B. Tayfeh-Rezaie, M. Zhukovskii, *Threshold for weak saturation stability* (2020) arXiv:2006.06855.
- [3] B. Bollobás, Weakly k-saturated graphs, Beiträge zur Graphen-theorie (1968) 25–31.
- [4] G. Kalai, Hyperconnectivity of graphs, Graphs Combin. (1985) 1: 65–79.
- [5] O. Kalinichenko, M. Zhukovskii, *Weak saturation stability*, (2022) arXiv:2107.11138.
- [6] D. Korándi, B. Sudakov, Saturation in random graphs, Random Structures Algorithms (2017) 51(1): 169–181.
- [7] M. Krivelevich, B. Patkós, *Equitable coloring of random graphs*, Random Structures Algorithms (2009) 35(1): 83–99.
- [8] G. Kronenberg, T. Martins, N. Morrison, Weak saturation numbers of complete bipartite graphs in the clique, J. Combin. Theory Ser. A (2021) 178: 105357.
- [9] L. Lovász, Flats in matroids and geometric graphs, Combinatorial Surveys (1977) 45–86.
- [10] M. Miralaei, A. Mohammadian, B. Tayfeh-Rezaie, *The weak saturation number of* $K_{2,t}$, preprint.
- [11] J. Spencer, Threshold Functions for Extension Statements, J. Combin. Theory Ser. A (1990) 53: 286–305.