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General Construction

e Suppose that Y is a compact oriented three-
manifold equipped with a self-indexing Morse
function h with a unigue minimum, a unique
maximum, g critical points of index 1 and g
critical points of index 2.

 The pre-image of 1.5 under h will be a surface of
genus g which we denote by S.



General Construction

e Suppose that Y is a compact oriented three-
manifold equipped with a self-indexing Morse
function h with a unigue minimum, a unique
maximum, g critical points of index 1 and g
critical points of index 2.
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Heegaard diagrams for three-manifolds

Each critical point of index 1 or 2
determines a simple closed curve on the
surface S. Denote the curves corresponding
to the index 1 critical points by a, i=1,...,8
and denote the curves corresponding to
the index 2 critical points by (3, i=1,...,8.



Heegaard diagrams for three-manifolds

Each critical point of index 1 or 2
determines a simple closed curve on the
surface S. Denote the curves corresponding
to the index 1 critical points by a, i=1,...,8
and denote the curves corresponding to
the index 2 critical points by (3, i=1,...,8.

The curves a, i=1,...,g are (homologically)
linearly independent. The same is true for

B, i=1,...,8.



e We add a marked point z to the diagram,
placed in the complement of these curves.
Think of it as a flow line for the Morse
function h, which connects the index 3
critical point to the index O critical point.



The marked point z
determines a flow line
connecting index-0 critical
point to the index-3
critical point

v




e We add a marked point z to the diagram,
placed in the complement of these curves.
Think of it as a flow line for the Morse
function h, which connects the index 3
critical point to the index O critical point.

* The set of data
H=(SI (a]_IGZI"'Iag)l(BlIBZI"‘IBg)IZ)

is called a pointed Heegaard diagram for
the three-manifold Y.



e We add a marked point z to the diagram,
placed in the complement of these curves.
Think of it as a flow line for the Morse
function h, which connects the index 3
critical point to the index O critical point.

* The set of data
H=(SI (a]_IGZI"'Iag)l(BlIBZI"‘IBg)IZ)

is called a pointed Heegaard diagram for
the three-manifold Y.

* H uniquely determines the three-manifold
Y but not vice-versa



A Heegaard Diagram for SxS?

Green curves
are a curves and
the red ones are
B curves



A different way of presenting this Heegaard
diagram

Each pair of circles of
the same color determines
a handle




A different way of presenting this Heegaard
diagram

These arcs are
completed to closed curves
using the handles



Knots in three-dimensional manifolds

* Any map embedding S! to a three-manifold Y
determines a homology class BOH,(Y,Z).
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homology class is called a knot.



Knots in three-dimensional manifolds

* Any map embedding S! to a three-manifold Y
determines a homology class BOH,(Y,Z).

 Any such map which represents the trivial
homology class is called a knot.

* In particular, if Y=S3, any embedding of S in
S3 will be a knot, since the first homology of
S3 is trivial.






Heegaard diagrams for knots

e A pair of marked points on the surface S of a
Heegaard diagram H for a three-manifold Y
determine a pair of paths between the
critical points of indices O and 3. These two
arcs together determine an image of S*
embedded in.



Heegaard diagrams for knots

e A pair of marked points on the surface S of a
Heegaard diagram H for a three-manifold Y
determine a pair of paths between the critical
points of indices 0 and 3. These two arcs

together determine an image of St embedded
inYy.

* Any knot in Y may be realized in this way
using some Morse function and the
corresponding Heegaard diagram.



Two points on the
surface S determine
aknotinyY

v




Heegaard diagrams for knots

A Heegaard diagram for a knot K is a set
H=(SI (G1,(]2,...,Gg),(Bl,Bz,...,Bg),Z,W)
where z,w are two marked points in the

complement of the curves a,,0,,...,d,, and
3.,B,,-..B, on the surface S.



Heegaard diagrams for knots

A Heegaard diagram for a knot K is a set
H=(SI (G1,(]2,...,Gg),(Bl,Bz,...,Bg),Z,W)

where z,w are two marked points in the
complement of the curves a,,a,,..,d, and
B1,B,,....5, 0n the surface S.

e There is an arc connecting z to w in the
complement of (0(1,0(2,...,O(g), and another arc
connecting them in the complement of
(B1,B2,-, B,)- Denote them by €, and &;.



Heegaard diagrams for knots

* The two marked points z,w determine the
trivial homology class if and only if the
closed curve g,-€5can be written as a linear
combination of the curves (0(1,0(2,...,O(g),
and (33,B,,...,3,) in the first homology of S.



Heegaard diagrams for

knots

* The two marked points z,w determine the

trivial homology class if and on

ly if the

closed curve g,-€5can be written as a linear

combination of the curves  (

a,d,,..,d),

and (33,B,,...,3,) in the first homology of S.
 The first homology group of Y may be

determined from the Heegaarc

diagram H:

H,(Y,2)=H,(S,2)/[0,=...= O, =B,=...=

3,=0]

g



A Heegaard diagram for the trefoil
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Constructing Heegaard diagrams for knots in S3

 Consider a plane projection of a knot K in
S3.



Constructing Heegaard diagrams for knots in S3

 Consider a plane projection of a knot K in
S3.

e Construct a surface S by thickening this
projection.



Constructing Heegaard diagrams for knots in S3

 Consider a plane projection of a knot K in
S3.

e Construct a surface S by thickening this
projection.

 Construct a union of simple closed curves
of two different colors, red and green,
using the following procedure:



The local construction
of a Heegaard diagram
from a knot projection
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The local construction
of a Heegaard diagram
from a knot projection
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The Heegaard diagram for trefoil after 2nd step



Delete the outer green curve



Add a new red curve and a pair of marked points on its two
sides so that the red curve corresponds to the meridian of K.



The green curves
denote 1st collection
of simple closed
curves

The red curves
denote 2nd collection
of simple closed
curves




From topology to Heegaard diagrams

e Using this process we successfully extract a
topological structure (a three-manifold, or a knot
inside a three-manifold) from a set of combinatorial

data: a marked Heegaard diagram
H=(S/ (a1/a21---;ag)l(Bl)BZ/-"/Bg)izli---izn)
where n is the number of marked points on S.



From Heegaard diagrams to Floer homology

e Heegaard Floer homology associates a
homology theory to any Heegaard diagram
with marked points.



From Heegaard diagrams to Floer homology

e Heegaard Floer homology associates a
homology theory to any Heegaard diagram
with marked points.

* In order to obtain an invariant of the
topological structure, we should show that
if two Heegaard diagrams describe the
same topological structure (i.e. 3-manifold
or knot), the associated homology groups
are isomorphic.



From Heegaard diagrams to Floer homology

 Given a marked Heegaard diagram

H=(S, (0,00,...,0,),(B1, B2 Bg),21,-,2,),
and a ring A which has the structure of a
Z[u,,u,,...,u ]-module, Heegaard Floer
homology associates a homology group
HF(H;A).



From Heegaard diagrams to Floer homology

 Given a marked Heegaard diagram

H=(S, (0,00,...,0,),(B1, B2 Bg),21,-,2,),
and a ring A which has the structure of a
Z[u,,u,,...,u ]-module, Heegaard Floer
nomology associates a homology group
HF(H;A).

e HF(H;A) is an A-module and is equipped
with a Z-grading if n=2.




Some results for knots in S3

 For each slUZ, we obtain a group HF(K,s)
which is an invariant of K (here A=Z7).
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Some results for knots in S3

 For each slUZ, we obtain a group HF(K,s)
which is an invariant of K (here A=Z7).

 There is a homological grading induced on
HF(K,s). As a result

HF(K,s)=L1., HF.(K,s)

e So each HF(K,s) has a well-defined Euler
characteristic X(K,s)




Some results for knots in S3

* The polynomial

PK(t)=ZSDZ X(K,S),ts

will be the symmetrized Alexander
polynomial of K.



Some results for knots in S3

* The polynomial

PK(t)=ZSDZ X(K,S),ts

will be the symmetrized Alexander
polynomial of K.

e There is a symmetry as follows:
HF.(K,s)=HF. ,((K,-s)



Some results for knots in S3

* The polynomial

PK(t)=ZSDZ X(K,S),ts

will be the symmetrized Alexander
polynomial of K.

e There is a symmetry as follows:
HF.(K,s)=HF. ,((K,-s)
e HF(K) determines the genus of K as follows;



Genus of a knot

e Suppose that K is a knot in S3.
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Genus of a knot

Suppose that K is a knot in S3.

Consider all the oriented surfaces C with
one boundary component in S3\K such that
the boundary of Cis K.

Such a surface is called a Seifert surface for
K.

The genus g(K) of K is the minimum genus
for a Seifert surface for K.



HFH determines the genus

o Let d(K) be the largest integer s such that
HF(K,s) is non-trivial.



HFH determines the genus

o Let d(K) be the largest integer s such that
HF(K,s) is non-trivial.

 Theorem (Ozsvath-Szabd) For any knot K in S3,
d(K)=g(K).




HFH and the 4-ball genus

e In fact there is a slightly more interesting
invariant T(K) defined from HF(K,A), where
A=Z[u,t,u,], which gives a lower bound for

the 4-ball genus g,(K) of K.



HFH and the 4-ball genus

e In fact there is a slightly more interesting
invariant T(K) defined from HF(K,A), where
A=Z[u,t,u,], which gives a lower bound for
the 4-ball genus g,(K) of K.

 The 4-ball genus in the smallest genus of a
surface in the 4-ball with boundary K in S3,
which is the boundary of the 4-ball.



HFH and the 4-ball genus

 The 4-ball genus gives a lower bound for the
un-knotting number u(K) of K.



HFH and the 4-ball genus

 The 4-ball genus gives a lower bound for the
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HFH and the 4-ball genus

 The 4-ball genus gives a lower bound for the
un-knotting number u(K) of K.

e Theorem(Ozsvath-Szabo)
T(K) <g,(K)<u(K)

e Corollary(Milnor conjecture, 1st proved by
Kronheimer-Mrowka using gauge theory)

If T(p,q) denotes the (p,q) torus knot, then
u(T(p,a))=(p-1)(q-1)/2




T(p,q): p strands, q twists
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computing HF(Y,Z) for any given 3-manifold
from its Heegaard diagram.



3-manioflds with trivial HF

e For Y=S3, HF(Y,A)=A.

 For A=Z there is a combinatorial algorithm for
computing HF(Y,Z) for any given 3-manifold
from its Heegaard diagram.

* Question: Are there other 3-manifolds with
trivial Heegaard Floer homology?
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3-manioflds with trivial HF

The structures on HFH imply that if HF(Y;A) is
trivial, then the ordinary homology of Y is the
same as the ordinary homology of S3.

Such 3-manifolds are called homology spheres.

If X=Y#Z and HF(X) is trivial, then both HF(Y)
and HF(Z) are trivial.

Theorem(E.) If for a prime homology sphere Y
we have HF(Y;Z)=Z, then Y can not contain an
iIncompressible torus.




3-manioflds with trivial HF

The structures on HFH imply that if HF(Y;A) is
trivial, then the ordinary homology of Y is the
same as the ordinary homology of S3.

Such 3-manifolds are called homology spheres.

If X=Y#Z and HF(X) is trivial, then both HF(Y)
and HF(Z) are trivial.

Theorem(E.) If for a prime homology sphere Y
we have HF(Y;Z)=Z, then Y can not contain an
iIncompressible torus.




3-manioflds with trivial HF

e Thurston Geometrization (Perelman): If Yis a
prime 3-manifold without any incompressible
torus inside it, then Y is either hyperbolic, or
has one of the other 7 geometries of Thurston.




3-manioflds with trivial HF

e Thurston Geometrization (Perelman): If Yis a
prime 3-manifold without any incompressible
torus inside it, then Y is either hyperbolic, or
has one of the other 7 geometries of Thurston.

e Theorem (E.). If Y is a homology sphere which
has one of the 7 other geometries of Thurston
and HF(Y,Z)=Z, then Y is either S or the

Poincare sphere P. Moreover, HF(P,A)=A for all
Al




3-manioflds with trivial HF

 Conjecture. If Y is a hyperbolic homology
sphere, then HF(Y,Z) is not equal trivial (i.e.
equal to Z).




3-manioflds with trivial HF

 Conjecture. If Y is a hyperbolic homology
sphere, then HF(Y,Z) is not equal trivial (i.e.
equal to Z).

e |f the conjecture is true, the only 3-manifolds
with trivial Heegaard Floer homology are
proved to be connected sums of several copies
of the Poincare sphere.
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* Fix a Heegaard diagram
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Main construction of HFH

* Fix a Heegaard diagram

H=(S, (O(1,0(2,...,O(g),([31,[32,...,Bg),zl,...,zn)

* Construct the complex 2g-dimensional
smooth manifold

X=Symé(S)=(5x5x...x5)/S(g)

where S(g) is the permutation groupon g
letters acting on the g-tuples of points from
S.



Main construction of HFH

* Fix a Heegaard diagram

H=(SI (a1)a21---1ag)1(51152;"-;Bg))zl;"-)zn)
* Construct the complex 2g-dimensional
smooth manifold

X=Symé(S)=(5x5x...x5)/S(g)

where S(g) is the permutation groupon g
letters acting on the g-tuples of points from

S.

 Every complex structure on S determines a
complex structure on X.



Main construction of HFH
 Consider the two g-dimensional tori
Te=0X0, X.. X0, and Tg=p; %[5, x..x[3,

in Z=SXSX...XS. The projection map from Z
to X embeds these two tori in X.
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 Consider the two g-dimensional tori
Te=0X0, X.. X0, and Tg=p; %[5, x..x[3,

in Z=SXSX...XS. The projection map from Z
to X embeds these two tori in X.

e These tori are totally real sub-manifolds of
the complex manifold X.



Main construction of HFH

 Consider the two g-dimensional tori
Te=0X0, X.. X0, and Tg=p; %[5, x..x[3,
in Z=SXSX...XS. The projection map from Z
to X embeds these two tori in X.

e These tori are totally real sub-manifolds of
the complex manifold X.

* If the curves a,,0,,...,0, meet the curves
31,B,-,Bg transversally on S, T, will meet Ty
transversally in X.



Intersection points of T,and Tj
* A point of intersection between T and Tg
consists of a g-tuple of points (xy,x,,...,X;) such
that for some element 00S(g) we have
x,00;n By, fori=1,2,...,8.



Intersection points of T,and Tj

* A point of intersection between T and Tg
consists of a g-tuple of points (xy,x,,...,X;) such
that for some element 00S(g) we have
x,00;n By, fori=1,2,...,8.

e The complex CF(H), associated with the

Heegaard diagram H, is

generated by the

intersection points x= (xl,xz,...,xg) as above.

The coefficient ring wil

which is a Z[u,,u,,...,u_

be denoted by A,
-module.



Differential of the complex

 The differential of this complex should have
the following form:

d(x)= D_b(x,y)y

yUT,nTg

The values b(x,y)0OA should be determined.
Then d may be linearly extended to CF(H).



Differential of the complex; b(x,y)

* Forx,yOT,n Ty consider the space T,(x,y) of
the homotopy types of the disks satisfying the
following properties:

u:[0,1]xROC - X
u(0,t)oT,, u(1,t)oTg
U(S,OO)Z)( ) U(S,-OO)Zy



Differential of the complex; b(x,y)

* Forx,yOT,n Ty consider the space T,(x,y) of
the homotopy types of the disks satisfying the
following properties:

u:[0,1]xROC - X
u(0,t)UT,, u(1,t)UT,
u(s,o0)=x, u(s,-o0)=y
* For each @O1L,(X,y) let M(@) denote the moduli

space of holomorphic maps u as above
representing the class .



Differential of the complex; b(x,y)




Differential of the complex; b(x,y)

e There is an action of R on the moduli space
M() by translation of the second
component by a constant factor: If u(s,t) is
holomorphic, then u(s,t+c) is also
holomorphic.



Differential of the complex; b(x,y)

e There is an action of R on the moduli space
M() by translation of the second
component by a constant factor: If u(s,t) is

nolomorphic, then u(s,t+c) is also

nolomorphic.

o If (@) denotes the formal dimension or
expected dimension of M(q), then the
guotient moduli space is expected to be of
dimension Y(®)-1. We may manage to
achieve the correct dimension.



Differential of the complex; b(x,y)

e Let n(¢p) denote the number of points in the
quotient moduli space (counted with a sign) if
L(@)=1. Otherwise define n()=0.



Differential of the complex; b(x,y)

e Let n(¢p) denote the number of points in the
quotient moduli space (counted with a sign) if
L(@)=1. Otherwise define n()=0.

* Let n(j,) denote the intersection number
of L(z)={z;}xSyms&*(S)0 Syms(S)=X
with Q.



Differential of the complex; b(x,y)

e Let n(¢p) denote the number of points in the
quotient moduli space (counted with a sign) if
L(@)=1. Otherwise define n()=0.

* Let n(j,) denote the intersection number
of L(z)={z;}xSyms&*(S)0 Syms(S)=X
with Q.

* Define b(x,y)=2,n(@).]],u;"09
where the sum is over all @ITT,(x,y).
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Example 1.

There is a unique holomorphic
Disk, up to reparametrization
of the domain, by Riemann
Mapping theorem



Two examples in dimension two
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Two examples in dimension two

Example 2




Two examples in dimension two

There is a unique holomorphic
disk from x to y, up to reparametrization

of the domain, by Riemann
\L Mapping theorem

Example 2 X



Two examples in dimension two

Example 2




Two examples in dimension two

The disk connecting
X 10 z



Two examples in dimension two

Example 2

The disk connecting
ztow



Two examples in dimension two

Example 2 X

The disk connecting
y tow



Two examples in dimension two
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Two examples in dimension two

Example 2

d(xX)=y+z
d(y)=w
d(z)=-w
d(w)=0



Basic properties

e The first observation is that d2=0.
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examples discussed here.



Basic properties

e The first observation is that d2=0.

 This may be checked easily in the two
examples discussed here.

* In general the proof uses a description of
the boundary of M(@®)/~ when (@)=2. Here
~ denotes the equivalence relation
obtained by R-translation. Gromov
compactness theorem and a gluing lemma
should be used.



Basic properties

e Theorem (Ozsvath-Szabo) The homology groups
HF(H,A) of the complex (CF(H),d) are invariants of
the pointed Heegaard diagram H. For a three-
manifold Y, or a knot (KOY), the homology group
is in fact independent of the specific Heegaard
diagram used for constructing the chain complex

and gives homology groups HF(Y,A) and HFK(K,A)
respectively.




Refinements of these homology groups

 Consider the space Spin¢(Y) of Spint-structures on
Y. This is the space of homology classes of
nowhere vanishing vector fields on Y. Two non-
vanishing vector fields on Y are called
homologous if they are isotopic in the
complement of a ball in Y.



Refinements of these homology groups

 Consider the space Spin¢(Y) of Spint-structures on
Y. This is the space of homology classes of
nowhere vanishing vector fields on Y. Two non-
vanishing vector fields on Y are called

homologous if they a
complement of a bal

* The marked point z d

of generators of CF(H

re isotopic in the
inYy.

efines a map s, from the set
) to Spin¢(Y):

SZ:TG N TB — SpInC(Y)

defined as follows :



Refinements of these homology groups

o If x=(xy,%;,...,X,)0T N Ty is an intersection point,
then each of x; determines a flow line for the
Morse function h connecting one of the index-1
critical points to an index-2 critical point. The
marked point z determines a flow line
connecting the index-0 critical point to the
index-3 critical point.

e All together we obtain a union of flow lines
joining pairs of critical points of indices of
different parity.
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different parity.
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nowhere vanishing vector field on Y.
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neighborhood of these paths to obtain a
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 The class of this vector field in Spin¢(Y) is
independent of this modification and is

denoted by s (x).



Refinements of these homology groups

 The gradient vector field may be modified in a
neighborhood of these paths to obtain a
nowhere vanishing vector field on Y.

 The class of this vector field in Spin¢(Y) is
independent of this modification and is
denoted by s (x).

* Ifx,yUT,n Ty are intersection points with
TL(x,y)ZL], then s (x) =s_(y).



Refinements of these homology groups

e This implies that the homology groups HF(Y,A)
decompose according to the Spin® structures
overY:

HF(Y,A)=11 sgspinm HF(Y,A;s)



Refinements of these homology groups

e This implies that the homology groups HF(Y,A)
decompose according to the Spin® structures
overY:

HF(Y,A)=11 sgspinm HF(Y,A;s)

e For each sOSpin¢(Y) the group HF(Y,A;s) is also
an invariant of the three-manifold Y and the
Spin® structure s.



Some examples

* For S3, Spin¢(S3)={s,} and HF(Y,A;s,)=A



Some examples

* For S3, Spin¢(S3)={s,} and HF(Y,A;s,)=A

» For S'xS?, Spin¢(S'xS?%)=Z. Let s, be the Spin°®
structure such that c,(s,)=0, then for s#s,,
HF(Y,A;s)=0. Furthermore we have

HF(Y,A;s,)=ALJIA, where the homological
gradings of the two copies of A differ by 1.



Heegaard diagram for S3

The opposite sides
of the rectangle
should be identified
to obtain a torus
(surface of genusl)




Heegaard diagram for S3

Only one
generator X, and
no differentials;
so the homology
will be A




Heegaard diagram for SxS?

Only two
generators x,y and
two homotopy
classes of disks of
iIndex 1.




Heegaard diagram for SxS?

The first disk
connecting X to y,
with Maslov index
one.




Heegaard diagram for SxS?

The second disk
connecting X to y,
with Maslov index
one. The sign will
be different from
the first one.




Heegaard diagram for SxS?

d(x)=d(y)=0
SZ(X):Sz(y):SO
H(X)=p(y)+1=1
HF(S1xS2,A,s,)=
AUACY)




Some other simple cases

* Lens spaces L(p,q).
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* Lens spaces L(p,q).

o S3 (K): the result of n-surgery on alternating
knots in S3. The result may be understood in
terms of the Alexander polynomial of the

knot.



Some other simple cases

* Lens spaces L(p,q).

o S3 (K): the result of n-surgery on alternating
knots in S3. The result may be understood in
terms of the Alexander polynomial of the

knot.

 Connected sums of pieces of the above
type: There is a connected sum formula.
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the better notation is
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Connected sum formula

e Spin°(Y,#Y,)=Spin°(Y,)dSpin<(Y,); Maybe
the better notation is
Spin¢(Y, #Y,)=Spin¢(Y,)#Spin(Y,)
o HF(Y #Y,,A;s #s,)=
HF(Y,A;s,) L1 HF(Y,,A;s,)
* In particular for A=Z, as a trivial Z[u,]-

module, the connected sum formula is
usually simple (in practice).
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Refinements for knots

 Consider the space of relative Spin® structures
Spin¢(Y,K) for a knot (Y,K);

e Spin¢(Y,K) is by definition the space of
homology classes of non-vanishing vector

fields in the complement of K which converge
to the orientation of K.
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Refinements for knots

 The pair of marked points (z,w) on a Heegaard
diagram H for K determine a map from the set
of generators xUT,n Tgto Spin<(Y,K),
denoted by s (x) LISpin<(Y,K).

* [n the simplest case where A=Z, the coefficient
of any yUUT,n T in d(x) is zero, unless
SK(X)st(y)-



Refinements for knots

e This is a better refinement in comparison
with the previous one for three-manifolds:

Spin¢(Y,K)=ZJSpin<(Y)




Refinements for knots

e This is a better refinement in comparison
with the previous one for three-manifolds:

Spin¢(Y,K)=ZJSpin<(Y)

* In particular for Y=S3 and standard knots we
have

Spin¢(K):=Spin¢(S3,K)=Z
We restrict ourselves to this case, with A=Z!
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Computations

e HF(K) is completely determined from the
symmetrized Alexander polynomial and the
signature o(K), if K is an alternating knot.

 Torus knots, three-strand pretzel knots,
etc.

e Small knots: We know the answer for all
knots up to 14 crossings.
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 There is an easy way to understand the
homotopy classes of disks in Tt,(x,y) when
the associated relative Spin® structures
associated with x,y in Spin¢(K) are the
same.



Why is it possible to compute?

 There is an easy way to understand the
homotopy classes of disks in Tt,(x,y) when
the associated relative Spin® structures
associated with x,y in Spin¢(K) are the
same.

* Let @be an element in T,,(x,y), and let
Z,,2,...,2,, be marked points on S, one in
each connected component of the
complement of the curves in S.
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Why is it possible to compute?

* Consider the subspaces L(z;)={z;}xSym#*(S)
and let n(j,@) be the intersection number of
@with L(z,).

e The collection of integers n(j,®), j=1,...,m
determine the homotopy class .

 There is a simple combinatorial way to
check if such a collection determines a
homotopy class in Tt,(x,y) or not.
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Why is it possible to compute?

e There is a combinatorial formula for the

expected dimension of () of M() in terms
of n(j,@ and the geometry of the curves on S.

 We know that if n(@) is not zero, then U(p)=1,
and all n(j,¢) are non-negative. Furthermore,
if z=z, and w=z,, then  n(1,¢)= n(2,¢)=0.
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Why is it possible to compute?

 These are strong restrictions. For example
these restrictions are enough for a complete
computation for alternating knots.

* In other cases, these are still pretty strong, and
help a lot with the computations.

* There are computer programs (e.g. by
Monalescue) which provide all the
simplifications of the above type in the
computations.



Some domains for which the moduli space is
known

Any 2n-gone as shown here
with alternating red and green
edges corresponds to as moduli
space contributing 1 to the
differential




Some domains for which the moduli space is
known

The same is true for the
same type of polygons with
a number of circles excluded
as shown in the picture.




Relation to the three-manifold invariants

e Theorem (Ozsvath-Szabo) Heegaard Floer
complex for a knot K determines the

Heegaard Floer homology for three-manifolds
obtained by surgery on K.



Relation to the three-manifold invariants

« T
O

neorem (E.) More generally if a 3-manifold is
otained from two knot-complements by

To
H

entifying them on the boundary, then the
eegaard Floer complexs of the two knots,

determine the Heegaard Floer homology of
the resulting three-manifold



