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Introduction

In this lecture, I will talk about the theory of exterior differential systems
(EDSs) and illustrate on a few very simple examples. Exterior differential
systems gives a geometric and coordinate-free approach to the formulation
and solution of differential equations, that is, a system of equations on a
manifold defined by equating to zero a number of exterior differential forms.
In the framework of exterior differential systems, differential equations are
replaced by differential ideals in the exterior algebra of differential forms on
a manifold, and the solutions of differential equations correspond to inte-
oral manifolds of these ideals. Exterior differential systems are thus very
well suited to the study of the differential systems that arise in differen-
tial geometry and in mechanics, particularly in geometric control theory.



Introduction

Some advantages among which are the facts that the forms themselves
often have a geometrical meaning, and that the symmetries of the exte-
rior differential system are larger than those generated simply by changes
of mndependent and dependent variables. Another advantage is that the
coordinate-free treatment naturally leads to the intrinsic features of many
systems of partial differential equations. Important classical examples of
problems that have been treated with great success using exterior differen-
tial systems include the local isometric embedding problems in Riemannian
seometry, nearly all the classical deformation and classification problems
for submanifolds, the local equivalence problem for G-structures, and the
study of sub-Riemannian structures and their invariants.



Some Advantages of EDS

P Geometrical meaning

P The larger symmetries than those of the total space of variables
p Coordinate-free treatment and intrinsic features of DEs

p Global properties of geometric objects au=
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Definition

An exterior differential system (EDS) is a pair (M, T) where M is a smooth manifold and I C Q*(M)
is a graded ideal in the ring Q*(M) of differential forms on M that is closed under exterior differentiation,
L.e., for any ¢ in I, its exterior derivative dg also lies in I.

The main interest in an EDS (M, T) centers around the problem of describing the submanifolds f : N —

M for which all the elements of 7 vanish when pulled back to N, i.e., for which f*¢ =0 for all ¢ € 7. Such

submanifolds are said to be integral manifolds of 1.

In practice, most EDS are constructed so that their integral manifolds will be the solutions of some
geometric problem one wants to study. Then the techniques to be described in these lectures can be brought
to bear,




Definition

The most common way of specifying an EDS (M, T) is to give a list of generators of 7.
For ¢q,...,¢, € Q" (M), the ‘algebraic’ ideal consisting of elements of the form

= At + Ao,

will be denoted (¢. ..., @), Wwhile the differential ideal 7 consisting of elements of the form

b= ndi+ - nd+ B adey+-- B ndd,

will be denoted {(¢1,...,@;).
Let

IP— T 1 QP(M)
QP (M) = AP(T* M)




Example

Elie Cartan developed the theory of exterior differential systems as a coordinate-free way to describe and
study partial differential equations. Before I describe the general relationship, let’s consider some examples:

Example 1:  An Ordinary Differential Equation. Consider the system of ordinary differential equations

where F' and G are smooth functions on some domain M < R®. This can be modeled by the EDS (M,T)
where
I ={dy— Flz,y,z)dr, dz — G(x,y,z)dr ).

It’s clear that the 1-dimensional integral manifolds of 7 are just the integral curves of the vector field

.0 d d
X = g—I—F[I,y,z)@—I—G(Ly?z]E.



Example

Example 2: A Pair of Partial Differential Equations. Consider the system of partial differential
equaftions
2, = Flx.y, z)

2y =Gz, Y, 2)

where F and G are smooth functions on some domain M < R®. This can be modeled by the EDS (M,T)
where
IT={(dx—F(z,y,z)dr - G(zr,y,2)dy,.

On any 2-dimensional integral manifold N2 < M of T, the differentials dx and dy must be linearly indepen-
dent. Thus, NV can be locally represented as a graph (r 1y, u(r, y)] The 1-form

dz—F(xr,y, 2)dr—G(z,y, 2 ) dy

vanishes when pulled back to such a graph if and only if the function u satisfies the differential equations

for all (z,y) in the domain of w.



Example

Example 3:  Compler Curves in C2. Consider M = C%, with coordinates z = x + i yand w = u + 1.
Let T = (¢1,¢2) where ¢ and ¢ are the real and imaginary parts, respectively, of

dz ndw = dx rdu — dy rdv + 1 (de rdv 4 dy » du).

Since 7! = (0), any (real) curve in C? is an integral curve of 7. A (real) surface N C C? is an integral
manifold of 7 if and only if it is a complex curve. If dz and dy are linearly independent on N, then locally N
can be written as a graph [;r?y;u(;r?y],-u(;r?y]] where u and v satisty the Cauchy-Riemann equations:
Uy — Uy = Uy + vz = 0. Thus, (M,7) provides a model for the Cauchy-Riemann equations.

Example 4: Linear Weingarten Surfaces.  This example assumes that you know some differential
geometry. Let M® = R*x S2andlet x: M — R® and u: M — S§? ¢ R® be the projections on the two
factors. Notice that the isometry group G of Euclidean 3-space acts on M in a natural way, with translations
acting only on the first factor and rotations acting ‘diagonally’ on the two factors together.

Consider the 1-form # = u - dx, which is G-invariant. If . : N — R? is an oriented surface, then the
lifting f : N — M given by f(p) = (.f.(p),y(p)) where v(p) € 52 is the oriented unit normal to the immersion ¢
at p, 1s an integral manifold of #. Conversely, any integral 2-manifold f : N — M of # for which the
projection xof : N — R?* is an immersion is such a lift of a canonically oriented surface ¢ : N — R®.

Al



The Frobenius Theorem

Of course, reformulating a system of PDE as an EDS might not necessarily be a usetul thing to do. It
will be useful if there are techniques available to study the integral manifolds of an EDS that can shed light
on the set of integral manifolds and that are not easily applicable to the original PDE system. The main
techniques of this type will be discussed in lectures later in the week, but there are a few techniques that
are available now.

The first of these iz when the ideal T is algebraically as simple as possible.

1eorem 1 HE FROBENIUS THEOREM) Let (M, 1) be an EDS with the property that 7 = _i.lgalg and

so that p 18 & consta indepdendent of p € M. Then for each p p € M there is a coordinate
ayatern x = (7 " 7" on a p-neighborhood U © M so tha
1
ALii = 4k T , 4 i

AR




The Frobenius Theorem

In other words, if 7 is algebraically generated by 1-forms and has constant ‘rank’, then 7 is locally
equivalent to the obvious ‘flat” model. In such a case, the n-dimensional integral manifolds of 7 are described
locally in the coordinate system x as ‘slices’ of the form

7 "
et =l et = 2"t =",

In particular, each connected integral manifold of 7 lies in a unique maximal integral manifold, which has
dimension n. Moreover, these maximal integral manifolds foliate the ambient manifold M.

If you look back at Example 2, you'll notice that T is generated algebraically by Z1 if and only if it is
generated algebraically by

Ll
add

(=dz— Flz,y,z)dr — G(x,y,z) dy
and this, in turn, is true if and only it {ad( = 0. (Why?) Now
(nd( = (Fy -G, +GF, — FGZ) dx rdy rdz.

Thus, by the Frobenius Theorem, if the two functions F' and G satisty the PDE F, -G, + G F, - F G, =0,
then for every point (g, yo. z0) € M, there is a function u defined on an open neighborhood of (zg, yy) € R
so that u(xp, yo) = z0 and so that u satisfies the equations u, = F(z,y,u) and u, = G(z,y,u).
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The Pfaff Theorem

There i1s another case (or rather, sequence of cases) in which there 1s a simple local normal form.

Theorem 2: (THE PFAFF THEOREM) Let (M,7) be an EDS with the property that 7 = (w) for some
nonvanishing I-form w. Let r > 0 be the smallest integer for which w..-x(dw]""“ = U Then lor oach
1 ntdrdl

point p ¢ M at which wa(dw) 18 nonzero, there is a coordinate system x = (z ,....2
neighborhond U/ ¢« M sothat 1) — (de” ' ) ilr — D and ifr > 0, then

i
i

J on a p-

i r ;} : 3 %
ntl g A" +3 nfd f[;lfﬂ—I_J . ';.E‘i"!-l- 7 drri:+2? £ 1 ‘:

lp=(ds" = r

a
i

Note that the case where r = 0 is really a special case of the Frobening Theorem. Points p € M for
which wa(dw)" 1s nonzero are known as the reqular points of the ideal 7. The regular points are an open set

i M.
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The Pfaff Theorem

In fact, the Ptaft Theorem has a slightly stronger form. It turns out that the maximum dimension of
an integral manifold of 7 that lies in the regular set ig n4r. Moreover, if N**" < M is such a maximal
dimensional integral manifold and N is embedded, then for every p £ N, one can choose the coordinates x
so that N MU 1s described by the equations

n+l _  n+2 __ _nt+d

)
T T T "t =),

':I

1 P e

L, an pnt3 pntS o pntrtl

In fact, any integral manifold in I near this one on which the n+4r functions
form a coordinate system can be described by equations of the form

_.Er?,+l _ f{xn+3 _rﬂ+5 Iﬂ+21“+1)

o2k _ of (_rn+3 pnt5 In+2r+1) 1<k <r
- ﬁyk . § o LR | 1 — —
for some suitable function f(y',...,y"). Thus, one can informally say that the integral manifolds of maximal

dimension depend on one arbitrary function of r variables.

V¢



Definition

Let G be a Lie group with Lie algebra g = T.(, and let 5 be its canonical left-invariant 1-form. Thus, n
is a 1-form on G with values in g that satisfies the conditions that, first 1. : 7.G = g — g 1s the identity,
and, second, that 7 is left invariant, i.e., L} (n) = n for all @ € G, where L, : G — G 1s left multiplication
by a. Let (G 1s a matrix group, with ¢ : G — M, (R) the inclusion into the n-by-n matrices, then

-1
n=g " dg.
It is well-known that 5 satisfies the Maurer-Cartan equation:

dn = —5[n,7].

\o



The Maurer-Cartan Theorem

Theorem 3: (MAURER-CARTAN) If NV 18 connected and simply connected and + is a smooth g-valued 1-form
on N that satisties dy = —% [v.7], then there exists a smooth map g : N — (. unique up to composition

.
¥

with a constant left translation, so that g'n = 1.

Sketch of the proof :

Let M = N x(G and consider the g-valued 1-form

#=n-—r.

It's easy to compute that

df = —%[8,6] — [0,7].

In particular, writing # = ' =y + - - - 4+ #° =, where ={,...,z. is a basis of g, the differential ideal

satisfies T = (41, ...,6°) ale. Moreover, the #% are manifestly linearly independent since they restrict to each
fiber {n} %G to be linearly independent. Thus, the hypotheses of the Frobenius theorem are satisfied, and M
is foliated by maximal connected integral manifolds of 7, each of which can be shown to project onto the
first factor N to be a covering manp.

Since N is connected and simply connected, each integral leaf projects diffeomorphically onto N and

hence is the graph of a map g : N — (. This g has the desired property.



The Gauss and Codazzi equations

As another typical application of the Frobenius Theorem, I want to consider one of the fundamental
theorems of surface theory in Euclidean space.

Let 2 : ¥ — R® be an immersion of an oriented surface ¥ and let u : £ — S? be its Gauss map. In
particular u - dz = (. The two quadratic forms

[=dr-dr, 0= —du-dr

are known as the first and second fundamental forms of the oriented immersion z.

It is evident that if y = Az 4+b where A lies in O(3) and b lies in R, then y will be an immersion with the
same first and second fundamental forms. (NB. The Ganss map of y will be v = det{4) Au = +A4u.) One of
the fundamental results of surface theory is a sort of converse to this statement, namely that if z,y: X — R®
have the same first and second fundamental forms, then they differ by an ambient isometry. (Note that the
first or second fundamental form alone is not enough to determine the immersion up to rigid motion.) This

is known as Bonnet’s Theorem, although it appears to have been accepted as true long before Bonnet’s proot
appeared,

ARY%



The Gauss and Codazzi equations

The standard argument for Bonnet’s Theorem goes as follows: Let 7 : F' — X be the oriented orthonor-
mal frame bundle of ¥ endowed with the metric I. Elements of F' consist of triples (p, v, vo) where (vy,v2) 18
an oriented, I-orthonormal basis of T,,X and 7(p, vi,v2) = p. There are unique 1-forms on F', say wy,wa,wq2
so that

dr(w) = vy wi(w) 4+ vo wolw)

for all w & T, 4y 05 F and so that
ﬂTf.L-']_ = —Ma AW, {fu.}g = WAl

Then
T — w12 & wo? = By w2 o1l o2
T 1=uw wha, Tl = hll‘-‘-’l Qh-lg..dlu.r‘g hgg wa,

for some functions hyq. hyo, and hoo. Defining way = hyy wy + hiowo and was = hiawy + hogwo, it is not
difficult to see that the R*-valued functions xr, e1 = 2'(v1), ea = 2'(v2), and e3 = e x ey must satisty the
matrix equation

0 0 0 0
d[l 0 0 U] . [1 0 0 U] w'l 0 Wi —w
r €] €3 €j r € €2 €3 wp —wiz 0 —wa

0wy w0

YA



The Gauss and Codazzi equations

0 0 0 0
(f[l 0 0 0] _ [1 0 0 U:| w' 0 wha —wa
xr e1 €2 €3 rooe1y €3 €3 wha o —uwM9 0 — a9

0 w3y wi 0O

Now, the matrix

0 0 0 0
wi o 0w —ws

Y —

; =
wy —wiz 0 —wa
0 w'al wao 0

takes values in the Lie algebra of the group G C SL(4,R) of matrices of the form

1 0 " :
[E} A:|’ be R°, A< 80(3),

while the mapping g : F' — G defined by

1 0 0 0
g_;rele;geg,

clearly satisfies g~ dg = ~. Thus, by the uniqueness in Cartan’s Theorem, the map g is uniquely determined
up to left multiplication by a constant in &.



The Gauss and Codazzi equations

Perhaps more interesting 18 the application of the existence part of Cartan’s Theorem. Given any
pair of quadratic forms (I, ]I) on a surface ¥ with I being positive definite, the construction of F' and the
accompanying forms wi,ws, wy2, w31, way and thence ~ can obviously be carried out. However, it won't
necessarily be true that dv = —vya~. In fact,

0o 0 0 0

o 0 (11—

d f + FaT = D _ﬂlﬂ D —932
0 ap (a2 0

where, for example,
. 2
(o = (ﬁ — hi1has + his )f.dl A Wo

where K is the Gauss curvature of the metric I. Thus, a necessary condition for the pair (I, ]I] to come from
an immersion is that the Gauss equation hold, i.e.,

det; I = K.




The Gauss and Codazzi equations

The other two expressions {137 = hy wisws and 30 = hywyaws are such that there 1s a well-defined 1-form
non X so that 79 = hywy + ho wy. The mapping d; from quadratic forms to 1-forms that T — 1 defines is
a first order linear differential operator. Thus, another necessary condition that the pair [I, ]I) come from
an immersion is that the Codazzi equation hold, 1.e.,

5(T) = 0.

By Cartan’s Theorem, if a pair (I, ]I] on a surface X satisty the Gauss and Codazzi equations, then, at
least locally, there will exist an immersion z : & — R® with (I, ]I] as its first and second fundamental forms.

Y



Integral Element

Let (M,7) be an EDS. An n-dimensional subspace E' C T, M is said to be an integral element of T if

o(v1,. .., vn) =0

for all ¢ € I™ and all vy,...,v, € E. The set of all n-dimensional integral elements of 7 will be de-
noted V,(I) C G, (TM). V,,(Z) 12 a closed subset of G,,(TM).

Our main interest in integral elements is that the tangent spaces to any n-dimensional integral mani-
fold N" € M are integral elements. Our ultimate goal is to answer the ‘converse’ questions: When is an
integral element tangent to an integral manifold? If so, in ‘how many’ ways?

It is certainly not always true that every integral element is tangent to an integral manifold.

Example: Non-eristence. Consider
(M,I) = (R, (zdr J)

The whole tangent space T,R 1s clearly a 1-dimensional integral element of 7, but there can’t be any 1-
dimensional integral manifolds of 7.

Yy



Extension Space

Let E' € V.(I) be an integral element and let (eq,...,e;) be a basis for E C T, M. The set
H(B)={veT,M|k(v,ey,...,ep) =0,¥s e TV CT. M

is known as the polar space of E., though it probably ought to be called the extension space of E, since a
vector v € T, M lies in H(F) if and only if either it lies in E (the trivial case) or else ET = E + Ruv lies
in Vi 1(Z). In other words, a (k+1)-plane E™ containing F' is an integral element of 7 if and only if it lies
in H(E).

Now, from the very definition of H(FE), it 1s a vector space and contains E. It is traditional to define
the function r: Vi(Z) — {-1,0,1,2,...} by the formula

r(E)=dmH(E) -k — 1.
The reason tor subtracting 1 is that then r(E') is the dimension of the set of (k+1)-dimensional integral

elements of 7 that contain E, with r(£') = —1 meaning that there are no such extensions. When r(E) = 0,

we have |
{E* € Vi (T)|E C BY } ~P(H(E)/E) ~RP"®).

Yy



The Cartan-Kahler Theorem

Theorem 4: (CARTAN-KAHLER) Let (M, T) be a real analytic EDS and suppose tha,t
(1) P C M is a connected, k-dimensional, real analytic, regular integral manifold of 7 with (P) > 0 and

(2) R C M is a real analytic submanifold of codimension r(P) containing P and having the property
tha,t TR H(T,P) has dimension k+1for all pe P.

There exists a unique, connected, (k+1)-dimensional, real analytic integral manifold X of 7 that satisfies P C
XCH

Y¢



The Cauchy-Kowaleski Theorem

Theorem 5: (CAUCHY-KOWALEWSKI) Suppose that D € R x R" x R* x R"’ is an open set and suppose
that F' : D — R® is real analytic. Suppose that U C R" is an open set and that ¢ : U — R® is a real analytic
function with the property that its ‘l-graph’

xcl/ }

__ do
{ (tg. X 0lx) ;—'i}{])
fj}:

lies in D for some ty. Then there exists a domain V € R x R" for which {tg} xU C V and a real analytic
function u: V — R satisfying

ou on , .
E[Ll] = F(t, X u[t,x],g[t,xj}, for (t,x) e }
ulle. x) — olx). for x e U,

Moreover, u is unique ag a real analytic solution in the sense that any other such (V. ) with u real analytic
satisfies u = u on any component of V 11V that meets {ty} xU.
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Integral Flags

A flag of integral elements
(U] = Eﬂ - El (G Eﬂ—l _ En =F C Tpﬂlr
where E; € V' (Z) tor 0 < i < n and E,, € V,,(I) will be known as a regular flag for short. (Note that the

terminus E,, of a regular flag is not required to be regular and, in fact, it can fail to be. However, it does
turn out that £, is ordinary.)

Now, corresponding to any integral flag
O)=FEyCEyC---CE, «.CE,=ECT,M
(regular or not), there is the descending flag of corresponding polar spaces

Tpﬂ'f 2 H(ED} D) H(Elj 2D 2 H(En—l] D) H(En] D) Eﬂ, .

In light of the Cartan-Kahler Theorem, there is a simple sufficient condition for the existence of an
integral manifold tangent to E € V,,(I).

T'heorem ot (M.7) be a real analytic EDS. If E = V(1) contains a flag of subspaces

M =Fqg by E,  .«E.=F 1M
where E;, =« V' (7)) for U < § < n, then there is a real analvtic n-dimensional integral manifold P 1 passing
through p and satistying = I




Cartan characters

It will be convenient to keep track track of the dimensions of these spaces in terms of their codimension
in T, M. For k < n, set

c(By) =dm(T,M) —dimH(Ey)=n+s—-k—-1-r(Ey)

where dim M = n+s. It works out best to make the special convention that c¢(F,) = s. (In practice, it
is usually the case that H(E,) = E,, in which case, the above formula for ¢(E) works even when you
set B =mn.) Since dimH(Ey) = dim E,, = n, we have ¢(E}) < s. Because of the nesting of these spaces, we
have

For notational convenience, set ¢(F_1) = 0. The Cartan characters of the flag F' = (Ey, E1. ..., E, ) are the

numbers
Sp(F) =c(Ey) — c(Ex—1) = 0.

They will play an important role in what follows.

I'm now ready to describe Cartan’s Test, a necessary and sufficient condition for a given flag to be
regular. First, let me introduce some terminology: A subset X M will be said to have codimension at
least ¢ at ¥ € X if there 1s an open z-neighborhood U © M and a codimension ¢ submanifold @ C U
so that X MU 1s a subset of ). In the other direction, X will be said to have codimension at most g
at x € X 1if there 1s an open z-neighborhood U € M and a codimension g submanifold () C U containing =
so that Q C X NU.
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Cartan's Test

Theorem 7: (CARTAN'S TEST) Let (M.7) be an EDS and let F = (Ey. Eq,..., E,) be an integral flag
of 7. Then V,,(7) has codmension at least

cF)=clEg) +elby)+---+elE, 1)

ey

inG,(I'M) at E,. Moreover, V, (1) is a smooth submanifold of G, (T' M) of codimension ¢(F'} in a neigh-
borhood of E., if and only if the flag F is regular.

This 1s a very powerful result, because it allows one to test for regularity of a flag by simple linear
algebra, computing the polar spaces H(E}) and then checking that V,,(7) is smooth near E, and of the
smallest possible codimension, ¢(F'). In many cases, these two things can done by inspection.
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Example

Example: Self-Dual 2-Forms. Any integral element E € Vy(Z)NG4(TR", dx) is defined by linear
equations of the torm

T = du® — p*(E)dz" = 0.
In order that @ vanish on such a 4-plane, it suffices that the pf(E) satisty four equations:

Pr+P3+p3 = Pi—Pa+Ds = PI—Pi+p3 = pi—py+pi =0
It's clear from this that V4(Z) N G4(TR, dx) is a smooth manifold of codimension 4 in G4(TR"). On the
other hand, if we let E;, € E be defined by the equation dx*t! = dzF*2 = ... = dz? =0 for 0 < k < 4, then

it 1s easy to see that

H(Eg)=H(E,)=1T,(M)
H(Ey) = {v € T,(M) | m3(v) =0}
H(E3) ={veT,(M)|mi(v) =ma(v) =ms(v) =0}
H(Ey) ={v eT,(M)|mi(v) = ma(v) = ma(v) =0

so c(Ep) = c(Eq) =0, c(Es) =1, ¢(Ey) = 3, and ¢(Ey) = 3. Since ¢(F') = 0+0+14+3 = 4, which is the
codimension of V3(Z) in G4(TR), Cartan’s Test is verified and the flag is regular.
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Weingarten Surface

Let z : N — R® be an immersion of an oriented surface and let u : N — 52 be the associated oriented
normal, sometimes known as the Gauss map. Recall that we have the two fundamental forms

[=dzx -dr. I=—du-dx.

The eigenvalues of T with respect to I are known as the principal curvatures of the immersion. On the open
set N* C N where the two eigenvalues are distinct, they are smooth functions on N. The complement N\ N'*
1s known as the umbilic locus. For simplicity, I am going to suppose that N* = N, though many of the
constructions that I will do can, with some work, be made to go through even in the presence of numbilics.

Possibly after passing to a double cover, we can define vector-valued functions e1,ea : N — s? so
that e; x es = u and so that, setting ?;r"; = ¢; - dr, we can write

dr=e; 1n1+es 1.
—du = ey K171 + e Ka1)a,

where ki > kg are the principal curvatures. The immersion = defines a Weingarten surface if the principal
curvatures satisfy a (non-trivial ) relation of the form F'(kq, k2) = 0. (For a generic immersion, the functions x;
satisty driadra # 0, at least on a dense open set.) For example, the equations ri4+ks = 0 and Kikre = 1
define Weingarten relations, perhaps better known as the relations H = 0 (minimal surfaces) and K = 1,
respectively.
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The Involutivity Condition

Let (M.Z) be an EDS and let Z © V°(Z) be a connected open subset of V7(Z). We say that Z is
involutive 1f every E € Z is the terminus of a regular flag. Usually, in applications, there is only one such Z
to worry about anyway, or else the ‘interesting’ component Z is clear from context, in which case we simply
say that (M,7) is involutive,

The first piece of good news about the prolongation process i that it doesn’t destroy involutivity:

Theorem 8: (PERSISTENCE OF INVOLUTIVITY) Let (M .T) be an EDS with 7” = (0) and let MY  Vo(T)
be a connected open subset of V(1) that is involutive. Then the character sequence {Sn b sl
the same for all regular flags F = (Eq, ..., E,) with E,, € MY, Moreover, the EDS (M'!), T} is involutive
on the set M@ c V, (’I (1)) of elements that are transverse to the projection 7 : M'Y) — M and its character
sequence (SEH,. . .,si”) is given by

(1

S =S st ds,
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The Cartan-Kuranishi Theorem

Theorem 9: (CARTAN-KURANISHI) Suppose that one has a sequence of manifolds M for k > 0 together
with embeddings ¢ : My — G, (I'M;_1) for k > 0 with the properties

(1) The composition m_1 oty : My — M, _ is a submersion,
(2) Forall &k > 2. ¢;(M}.) is a submanifold of V,,(C;._s,m_o). the integral elements of the contact
system Cp._9 on G,(T'My_») transverse to the fibers of m._o: G, (T M. _2) — M;_s.

Then there exists a ky = 0 so that for k > kg, the submanifold ¢ 11(M;41) 1s an involutive open subset
of Vi, ( :.}:,{3;;_1), where 1, C._1 18 the EDS on M. pulled back from G,(T My ).
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Prolongation

A sequence of manifolds and immersions as described in the theorem is sometimes known as a prolon-
gation sequence.

Now, you can imagine how thig theorem might be useful. When you start with an EDS (M,7) and
some submanifold ¢ : Z — V() that is not involutive, you can start building a prolongation sequence by
setting My = Z and looking for a submanifold My C V,,(¢*Cy) that is some component of V, (¢*Cy). You
keep repeating this process until either vou get to a stage M; where V,,(¢*Ci._1) 18 empty, in which case
there aren’t any integral manifolds of this kind, or else, eventually, this will have to result in an involutive
system, in which case you can apply the Cartan-Kahler Theorem (if the system that you started with is real
analytic).

The main difficulty that you'll run into is that the spaces V,,(Z) can be quite wild and hard to describe.
I don’t want to dismiss this as a trivial problem, but it really is an algebra problem, in a sense. The other
difficulty is that the the components M; C V,,(Z) might not submerse onto My = M, but onto some proper
submanifold, in which case, you’ll have to restrict to that submanifold and start over.

In the case that the original EDS (M, 7) is real analytic, the set V,,(7) C G,,(T'M) will also be real
analytic and so has a canonical stratification into submanifolds

Vo) = 2.
BeB

One can then consgider the family of prolongations (£ g,Iélj'] and analyse each one separately. (Fortunately,

in all the interesting cases I'm aware of, the number of strata is mercifully small.)



Prolongation

Now, there are precise, though somewhat technical, hypotheses that will ensure that this prolongation
Ansatz, when iterated and followed down all of its various branches, terminates after a finite number of steps,
with the result being a finite (possibly empty) set of EDSs { (M. 1) ‘ v E F} that are involutive. This
result (with the explicit technical hypotheses) is due to Kuranishi and is known as the Cartan-Kuranishi
Prolongation Theorem. (Cartan had conjectured/stated this result in his earlier writings, but never provided
adequate justification for his claims.) In practice, though, Kuranishi’s result is used more as a justification
for carryving out the process of prolongation as part of the analysis of an EDS, when it is necessary.
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Isometric Embedding of
surfaces with Prescribed Mean Curvature

Consider a given abstract oriented surface N? endowed with a Riemannian metric ¢ and a choice of a
smooth function H. The question we ask is this: When does there exist an isometric embedding = : N2 — R®
such that the mean curvature function of the immersion 18 H? If you think about it, this is four equations
for the map = (which has three components), three of first order (the isometric embedding condition) and
one of second order (the mean curvature restriction).

Since H? — K = (kj—k2)? > 0 for any surface in 3-space, one obvious restriction coming from the Gauss
equation is that H% — K must be nonnegative, where K is the Gauss curvature of the metric g. I'm just
going to treat the case where H? — K is strictly positive, though there are methods for dealing with the
‘umbilic locus’ (I just don’t want to bother with them here). In fact, set r = VH? — K > 0.

The simplest way to set up the problem is to begin by fixing an oriented, g-orthonormal cofram-
ing (11, 12), with dual frame field (uq,us). We know that there exists a unique 1-form 72 so that

dmy = —ma A12, dng = ma A, dnio =K an.

o



Isometric Embedding of
surfaces with Prescribed Mean Curvature

This suggests setting up the following exterior differential svstem for the ‘graph’of f in N x F'. Let M =
N x F x S, with ¢ being the ‘coordinate’ on the S! factor and consider the ideal T generated by the five
1-forms

9{;=u3
01 =wi —m
Bo = wa — 12

By = wis — M12
Oy = w3y — (H+rcosg)m —rsing
Oy = gy — 7 sin gy — (H—reos )

It's easy to see (and you should check) that

dfy = dby = dfs = df; = 0 mod {6y, 01, 62,03, 604,05}.

1



Isometric Embedding of
surfaces with Prescribed Mean Curvature

The interesting case will come when we look at the other two 1-forms. In fact, the formula for these is simply

dfdy = rra(singn —cosor
! A (sin g — cos 32)} mod {6, 61,85, 63, 0y, 65}

dbs = —r7 a(cos @ +sinodn)
where, setting dr = riyny +rone and dH = Hym + Ha1pa

7 =dd— 2 —r ' (ry + Hycos ¢ — Hysing) i

+rY(ry — Hycos¢— Hysing)na.
It is clear that there 12 a unique integral element at each point of M and that it is described by #y = - - - =

0 =7 =0. Thus, MV = M and
T = (60,61, 0,03,04,05,7).
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Isometric Embedding of
surfaces with Prescribed Mean Curvature

To get the structure of 7' is is only necessary to compute dr now and the result of that is
dr = T‘_Q(C cos @+ S sin o + T} m ~n2 mod {6y, 01,05,05,04,05, 7}
where the tunctions €', S, and T are defined on the surface by

C'=2riHy —2roHo —rHi1 + rHoo
S=2roH| +2rHy — 2rfHq0,

T =2r* —2H*? 4 r(ri4ra) — m? —r? — Hi® — Hy".
and I have defined H,; and r;; by the equations

dHy = —Honya+Hyym + Hiana,
dHa= Himao+ Hiam + Haana,
dri = —romo+ri1m +riene,

dro = rinie+ri2n +rean:.

YA



Isometric Embedding of
surfaces with Prescribed Mean Curvature

Clearly, there are no integral elements of T'1) except along the locus where C cosé + S sing + 7 = 0,
so 1t's a question of what this locus looks like.

First, off, note that if 72 > S? 4+ (2, then this locus is empty. Now, this inequality is easily seen not to
depend on the choice of coframing (11, 172 ) that we made to begin with. It depends only on the metric g and
the function H. One way to think of this is that the condition T? < S? + C'? is a differential inequality any
g and H satisty if they are the metric and mean curvature of a surface in R,

Now, when T2 < C?4 52, there will be exactly two values of ¢ (mod 27) that satisfy C' cos ¢+ 5 sin ¢+
T =0, say ¢, and ¢_, thought of as functions on the surface N. If you restrict to this double cover ¢ = ¢4,
we now have an ideal 71 on an 8-manifold that is generated by seven 1-forms. In fact, g, . ... 805 are clearly
independent, but now

T=Eim+En

where Fy and FEs are functions on the surtace N © NxS! defined by the equation €' cos ¢+ S sinp+T1" = 0.
Wherever either of these functions is nonzero, there is clearly no solution. On the other hand, it Ey = Fy =0
on N, then there are exactly two geometrically distinct ways for the surtface to be isometrically embeded
with mean curvature H. If you unravel this, yvou will see that it is a pair of fifth order equations on the

pair (g, H). (The expressions 7' and 5?4+C? are fourth order in ¢ and second order in H. )

Another possibility is that T'= C' = S = 0, in which case 7'} becomes Frobenius.
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Isometric Embedding of
surfaces with Prescribed Mean Curvature

Of course, this raises the question of whether there exist any pairs (g, H) satistying these equations.
One way to try to satisty the equations is to look for special solutions. For example, it H were constant,
then Hy, Ho, Hyy, Hyo, and Hoy would all be zero, of course, so this would automatically make C'=5 =10
and then there is only one more equation to satisfy, which can now be reéxpressed, using K = H? — r2, as

T =r*(AyIn(H* - K) —4K) =0

where A, 1s the Laplacian associated to g.

It follows that any metric g on a simply connected surface NV that satisfies the fourth order differential
equation Ay In(H 2 _ K)— 4K = 0 can be isommetrically embedded in R® as a surface of constant mean
curvature H in a l-parameter family (in fact, an S') of ways. In particular, we have Bonnet's Theorem:




Isometric Embedding of
surfaces with Prescribed Mean Curvature

However, the cases where H is constant give only one special class of solutions of the three equations €' =
S =T = 0. Could there be others?

Well, let's restrict to the open set U C N where dH # 0, i.e., where H 12 + Ho? > 0. Remember, the
original coframing (71, n2) we chose was arbitrary, so we might as well use the nonconstancy of H to tack
this down. In fact, let’s take our coframing so that the dual frame field (uq,us) has the property that wuy
points in the direction of steepest increase for H, 1.e., in the direction of the gradient of H. This means that,
for this coframing Ho = 0 and Hy > 0.

The equations ¢' = S = 0 now simplify to

Hyo = (ry/r) Hy, Hy — Hoo = (2r/r)H; .

Moreover, looking back at the structure equations found =o far, this implies that dH = Hy 1y and that there

15 a function F so that X
Hy "dHy = (rP +ri/r)m + (ra/r)n2, ,

—mo = (ro/r)m +(rP—ri/r)na.
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Isometric Embedding of
surfaces with Prescribed Mean Curvature

The first equation can be written in the form
d(ln(Hlff.r']] =rPmn.
Differentiating this and using the structure equations we have so far then vields that dP~n; = 0, so that

there is some A so that dP = An;. On the other hand, differentiating the second of the two equations above
and using T = 0 to simplify the result, we see that the multiplier A is determined. In fact, we must have

dP = (r’H? + H{® —r* — r‘iPQ]l 1 .
Differentiating this relation and using the equations we have found =o far vields
0= 2?"_4(H12 + T‘QHQJ o1 AT)2 .
In particular, we must have ro = 0. Of course, this simplifies the equations even further. Taking the

components of 0 = dro = rynya + r11 11 + 722 172 together with the equation 7' = 0 allows us to solve for rqq,
ri2, and rog in terms of {r, H,ry, Hy, P}.
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Isometric Embedding of
surfaces with Prescribed Mean Curvature

In fact, collecting all of this information, we get the following structure equations for any solution of
our problem:

dm =0

dia = (rP —ry/r)n ~na
dr=rim

dH = Him

dry = (2r® — 2H*r 4+ rirP — 2% vy — Hi? Jr)m
dHy = Hi(rP+ri/r)m
dP = (r*H? + H? —rt = Py
These may not look promising, but, in fact, they give a rather complete description of the pairs (g, ) that
we are seeking. Suppose that N is simply connected. The first structure equation then says that 5 = dx

for some function x, uniquely defined up to an additive constant. The last 5 structure equations then say
that the tunctions (r, H,r1, Hy, P) are solutions of the ordinary differential equation syvstem

!
r =1

H' = H,
ry = (2r® — 2H?r 4 rirP — 2r % Jr — H%/r)
1 =Hy(rP 4+ry/r)
P'=(r’H? + H\® — r* —r'P?)
&y



Isometric Embedding of
surfaces with Prescribed Mean Curvature

Obviously, this defines a vector field on the open set in R” defined by r > 0, and there is a four parameter
family of integral curves of this vector field. Given a solution of this ODE system on some maximal z-interval,
there will be a function F' uniquely defined up to an additive constant so that

F'=(rP —ry/r).

Now by the second structure equation, we have d(e ¥n9) = 0, so that there must exist a function y on the
surface N so that 1o = ef" dy. Thus, in the (z, y)-coordinates, the metric is of the form

2F(x) 4 2

q= dr? +e dy

where (r, H,rq, H1, P, F') satisty the above equations.
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EDS Algorithm

Linear Pfaffian
system (I,J) on M

l

Is [T1 equiv 0? Restrict to N (subset of M)
. il defined by [T]=0

Is tableau involutive? e DoOneE: we have
l local existence

Prolong to get a new
system on N of G(TM,n)
Rename N as M
and the canonical

.o System as (L,J)

Start over on N
rename N as M

|

Is the independent
condition hold on N?

!

Done: there are no
integral mfolds.






