The independence numbers and the chromatic numbers of random subgraphs

Andrei Raigorodskii

Moscow Institute of Physics and Technology Moscow, Russia

Erdős-Rényi random graph

Let $n \in \mathbb{N}$, $p \in [0,1]$. G(n,p) is obtained by drawing independently edges on n vertices, each with probability p.

Erdős-Rényi random graph

Let $n \in \mathbb{N}$, $p \in [0,1]$. G(n,p) is obtained by drawing independently edges on n vertices, each with probability p.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a value $\frac{c}{n}$, where c>1. Let $d=\frac{1}{1-p}$. Then w.h.p.

$$\alpha(G(n,p)) \sim 2\log_d(np), \quad \chi(G(n,p)) \sim \frac{n}{2\log_d(np)}.$$

Erdős-Rényi random graph

Let $n \in \mathbb{N}$, $p \in [0,1]$. G(n,p) is obtained by drawing independently edges on n vertices, each with probability p.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a value $\frac{c}{n}$, where c>1. Let $d=\frac{1}{1-p}$. Then w.h.p.

$$\alpha(G(n,p)) \sim 2\log_d(np), \quad \chi(G(n,p)) \sim \frac{n}{2\log_d(np)}.$$

A general random subgraph

Let $n \in \mathbb{N}$, $p \in [0,1]$, $G_n = (V_n, E_n)$ — an arbitrary sequence of graphs. $G_{n,p}$ is obtained from G_n by keeping independently edges of G_n , each with probability p.

Erdős-Rényi random graph

Let $n \in \mathbb{N}$, $p \in [0,1]$. G(n,p) is obtained by drawing independently edges on n vertices, each with probability p.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a value $\frac{c}{n}$, where c>1. Let $d=\frac{1}{1-p}$. Then w.h.p.

$$\alpha(G(n,p)) \sim 2\log_d(np), \quad \chi(G(n,p)) \sim \frac{n}{2\log_d(np)}.$$

A general random subgraph

Let $n\in\mathbb{N}$, $p\in[0,1]$, $G_n=(V_n,E_n)$ — an arbitrary sequence of graphs. $G_{n,p}$ is obtained from G_n by keeping independently edges of G_n , each with probability p.

What can be said about $\alpha(G_{n,p})$ and $\chi(G_{n,p})$?

A special case

Main definition

Let $r, s, n \in \mathbb{N}$, s < r < n, and let G(n, r, s) = (V, E), where

$$V = {\mathbf{x} = (x_1, \dots, x_n) : x_i \in {0, 1}, x_1 + \dots + x_n = r},$$

$$E = \{\{\mathbf{x}, \mathbf{y}\} : (\mathbf{x}, \mathbf{y}) = s\}.$$

A special case

Main definition

Let $r,s,n \in \mathbb{N}$, s < r < n, and let G(n,r,s) = (V,E), where

$$V = \{ \mathbf{x} = (x_1, \dots, x_n) : x_i \in \{0, 1\}, x_1 + \dots + x_n = r \},$$
$$E = \{ \{ \mathbf{x}, \mathbf{y} \} : (\mathbf{x}, \mathbf{y}) = s \}.$$

Equivalent definition

Let $r,s,n \in \mathbb{N}, \ s < r < n.$ Let [n] be an n-element set, and let G(n,r,s) = (V,E), where

$$V = {[n] \choose r}, \quad E = \{A, B \in V : |A \cap B| = s\}.$$

A special case

Main definition

Let $r, s, n \in \mathbb{N}$, s < r < n, and let G(n, r, s) = (V, E), where

$$V = {\mathbf{x} = (x_1, \dots, x_n) : x_i \in {0,1}, x_1 + \dots + x_n = r},$$

$$E = \{\{\mathbf{x}, \mathbf{y}\}: \ (\mathbf{x}, \mathbf{y}) = s\}.$$

Equivalent definition

Let $r,s,n \in \mathbb{N}, \, s < r < n.$ Let [n] be an n-element set, and let G(n,r,s) = (V,E), where

$$V = {[n] \choose r}, \quad E = \{A, B \in V : |A \cap B| = s\}.$$

Again, what can be said about $\alpha(G_p(n,r,s))$ and $\chi(G_p(n,r,s))$?


```
Why studying G(n, r, s)?
```

Why studying G(n, r, s)?

• Coding theory ("Johnson's graphs"):

Why studying G(n, r, s)?

• Coding theory ("Johnson's graphs"): the independence number $\alpha(G(n,r,s))$ stands for the maximum size of a code with one forbidden distance;

Why studying G(n, r, s)?

• Coding theory ("Johnson's graphs"): the independence number $\alpha(G(n,r,s))$ stands for the maximum size of a code with one forbidden distance; the clique number $\omega(G(4k,2k,k))$ is responsible for the existence of an Hadamard matrix; etc.

Why studying G(n, r, s)?

- Coding theory ("Johnson's graphs"): the independence number $\alpha(G(n,r,s))$ stands for the maximum size of a code with one forbidden distance; the clique number $\omega(G(4k,2k,k))$ is responsible for the existence of an Hadamard matrix; etc.
- Combinatorial geometry: G(n,r,s) is a "distance" graph, i.e., its edges are of the same length $\sqrt{2(r-s)}$. The chromatic number $\chi(G(n,r,s))$ provides important bounds in the Nelson–Hadwiger problems of space coloring as well as in the Borsuk problem of partitioning sets in spaces into parts of smaller diameter.

Why studying G(n, r, s)?

- Coding theory ("Johnson's graphs"): the independence number $\alpha(G(n,r,s))$ stands for the maximum size of a code with one forbidden distance; the clique number $\omega(G(4k,2k,k))$ is responsible for the existence of an Hadamard matrix; etc.
- Combinatorial geometry: G(n,r,s) is a "distance" graph, i.e., its edges are of the same length $\sqrt{2(r-s)}$. The chromatic number $\chi(G(n,r,s))$ provides important bounds in the Nelson–Hadwiger problems of space coloring as well as in the Borsuk problem of partitioning sets in spaces into parts of smaller diameter.
- ullet G(n,r,0) is the classical Kneser graph; G(n,1,0) is just a complete graph.

Why studying G(n, r, s)?

- Coding theory ("Johnson's graphs"): the independence number $\alpha(G(n,r,s))$ stands for the maximum size of a code with one forbidden distance; the clique number $\omega(G(4k,2k,k))$ is responsible for the existence of an Hadamard matrix; etc.
- Combinatorial geometry: G(n,r,s) is a "distance" graph, i.e., its edges are of the same length $\sqrt{2(r-s)}$. The chromatic number $\chi(G(n,r,s))$ provides important bounds in the Nelson–Hadwiger problems of space coloring as well as in the Borsuk problem of partitioning sets in spaces into parts of smaller diameter.
- ullet G(n,r,0) is the classical Kneser graph; G(n,1,0) is just a complete graph.
- Constructive bounds for Ramsey numbers.

Theorem (Frankl, Füredi, 1985)

Let r, s be fixed as $n \to \infty$.

• If
$$r \leqslant 2s + 1$$
, then $\alpha(G(n, r, s)) = \Theta(n^s)$.

Theorem (Frankl, Füredi, 1985)

Let r, s be fixed as $n \to \infty$.

- If $r \leqslant 2s + 1$, then $\alpha(G(n, r, s)) = \Theta(n^s)$.
- If r > 2s + 1, then $\alpha(G(n, r, s)) = \Theta(n^{r-s-1})$.

Theorem (Frankl, Füredi, 1985)

Let r, s be fixed as $n \to \infty$.

- If $r \leqslant 2s + 1$, then $\alpha(G(n, r, s)) = \Theta(n^s)$.
- If r > 2s + 1, then $\alpha(G(n, r, s)) = \Theta(n^{r-s-1})$.

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013-2016)

Let r, s be fixed as $n \to \infty$.

• If $r \leqslant 2s+1$, then w.h.p. $\alpha(G_{1/2}(n,r,s)) = \Theta\left(\alpha(G(n,r,s))\log n\right)$.

Theorem (Frankl, Füredi, 1985)

Let r, s be fixed as $n \to \infty$.

- If $r \leqslant 2s + 1$, then $\alpha(G(n, r, s)) = \Theta(n^s)$.
- If r > 2s + 1, then $\alpha(G(n, r, s)) = \Theta(n^{r-s-1})$.

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013–2016)

Let r, s be fixed as $n \to \infty$.

- If $r \leqslant 2s+1$, then w.h.p. $\alpha(G_{1/2}(n,r,s)) = \Theta\left(\alpha(G(n,r,s))\log n\right)$.
- If r>2s+1, then w.h.p. $\alpha(G_{1/2}(n,r,s))\sim\alpha(G(n,r,s))$.

Let $r \geqslant 2$, s = 0. Then G(n, r, s) is Kneser's graph.

Let $r \geqslant 2$, s = 0. Then G(n, r, s) is Kneser's graph.

Bollobás, Narayanan, A.M., 2016

Fix a real number $\varepsilon>0$ and let r=r(n) be a natural number such that $2\leqslant r(n)=o(n^{1/3}).$ Let $p_c(n,r)=((r+1)\log n-r\log r)/\binom{n-1}{r-1}.$ As $n\to\infty$,

$$\mathbb{P}\left(\alpha(G_p(n,r,0)) = \alpha(G(n,r,0)) = \binom{n-1}{r-1}\right) \to \begin{cases} 1 & \text{if } p \geqslant (1+\varepsilon)p_c(n,r) \\ 0 & \text{if } p \leqslant (1-\varepsilon)p_c(n,r). \end{cases}$$

Let $r \geqslant 2$, s = 0. Then G(n, r, s) is Kneser's graph.

Bollobás, Narayanan, A.M., 2016

Fix a real number $\varepsilon>0$ and let r=r(n) be a natural number such that $2\leqslant r(n)=o(n^{1/3}).$ Let $p_c(n,r)=((r+1)\log n-r\log r)/\binom{n-1}{r-1}.$ As $n\to\infty$,

$$\mathbb{P}\left(\alpha(G_p(n,r,0)) = \alpha(G(n,r,0)) = \binom{n-1}{r-1}\right) \to \begin{cases} 1 & \text{if } p \geqslant (1+\varepsilon)p_c(n,r) \\ 0 & \text{if } p \leqslant (1-\varepsilon)p_c(n,r). \end{cases}$$

Successively improved by Das, Tran, Balogh, and others.

Let $r \geqslant 2$, s = 0. Then G(n, r, s) is Kneser's graph.

Bollobás, Narayanan, A.M., 2016

Fix a real number $\varepsilon>0$ and let r=r(n) be a natural number such that $2\leqslant r(n)=o(n^{1/3}).$ Let $p_c(n,r)=((r+1)\log n-r\log r)/\binom{n-1}{r-1}.$ As $n\to\infty$,

$$\mathbb{P}\left(\alpha(G_p(n,r,0)) = \alpha(G(n,r,0)) = \binom{n-1}{r-1}\right) \to \begin{cases} 1 & \text{if } p \geqslant (1+\varepsilon)p_c(n,r) \\ 0 & \text{if } p \leqslant (1-\varepsilon)p_c(n,r). \end{cases}$$

Successively improved by Das, Tran, Balogh, and others. Let $r\geqslant 4,\, s=1.$

Let $r \geqslant 2$, s = 0. Then G(n, r, s) is Kneser's graph.

Bollobás, Narayanan, A.M., 2016

Fix a real number $\varepsilon>0$ and let r=r(n) be a natural number such that $2\leqslant r(n)=o(n^{1/3}).$ Let $p_c(n,r)=((r+1)\log n-r\log r)/\binom{n-1}{r-1}.$ As $n\to\infty$,

$$\mathbb{P}\left(\alpha(G_p(n,r,0)) = \alpha(G(n,r,0)) = \binom{n-1}{r-1}\right) \to \begin{cases} 1 & \text{if } p \geqslant (1+\varepsilon)p_c(n,r) \\ 0 & \text{if } p \leqslant (1-\varepsilon)p_c(n,r). \end{cases}$$

Successively improved by Das, Tran, Balogh, and others. Let $r \geqslant 4$. s=1.

Pyaderkin, A.M., 2017

W.h.p. $\alpha(G_{1/2}(n,r,s)) = \alpha(G(n,r,s))$.

Let $r \geqslant 2$, s = 0. Then G(n, r, s) is Kneser's graph.

Bollobás, Narayanan, A.M., 2016

Fix a real number $\varepsilon>0$ and let r=r(n) be a natural number such that $2\leqslant r(n)=o(n^{1/3}).$ Let $p_c(n,r)=((r+1)\log n-r\log r)/\binom{n-1}{r-1}.$ As $n\to\infty$,

$$\mathbb{P}\left(\alpha(G_p(n,r,0)) = \alpha(G(n,r,0)) = \binom{n-1}{r-1}\right) \to \begin{cases} 1 & \text{if } p \geqslant (1+\varepsilon)p_c(n,r) \\ 0 & \text{if } p \leqslant (1-\varepsilon)p_c(n,r). \end{cases}$$

Successively improved by Das, Tran, Balogh, and others. Let $r \geqslant 4$. s=1.

Pyaderkin, A.M., 2017

W.h.p. $\alpha(G_{1/2}(n,r,s)) = \alpha(G(n,r,s))$.

Of course 1/2 can be replaced by another function. However, the threshold is unknown.

Let $r \geqslant 2$, s = 0. Then G(n, r, s) is Kneser's graph.

Bollobás, Narayanan, A.M., 2016

Fix a real number $\varepsilon>0$ and let r=r(n) be a natural number such that $2\leqslant r(n)=o(n^{1/3})$. Let $p_c(n,r)=((r+1)\log n-r\log r)/\binom{n-1}{r-1}$. As $n\to\infty$,

$$\mathbb{P}\left(\alpha(G_p(n,r,0)) = \alpha(G(n,r,0)) = \binom{n-1}{r-1}\right) \to \begin{cases} 1 & \text{if } p \geqslant (1+\varepsilon)p_c(n,r) \\ 0 & \text{if } p \leqslant (1-\varepsilon)p_c(n,r). \end{cases}$$

Successively improved by Das, Tran, Balogh, and others. Let $r \geqslant 4$. s=1.

Pyaderkin, A.M., 2017

W.h.p. $\alpha(G_{1/2}(n,r,s)) = \alpha(G(n,r,s))$.

Of course 1/2 can be replaced by another function. However, the threshold is unknown.

No other cases of strong stability are known.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ め900

Remind that

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013–2016)

Let r,s be fixed as $n\to\infty$. If $r\leqslant 2s+1$, then w.h.p. $\alpha(G_{1/2}(n,r,s))=\Theta\left(\alpha(G(n,r,s))\log n\right).$

Remind that

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013–2016)

Let r,s be fixed as $n\to\infty$. If $r\leqslant 2s+1$, then w.h.p. $\alpha(G_{1/2}(n,r,s))=\Theta\left(\alpha(G(n,r,s))\log n\right).$

If r=1, s=0, then we have already cited the much subtler classical result.

Remind that

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013–2016)

Let r,s be fixed as $n\to\infty$. If $r\leqslant 2s+1$, then w.h.p. $\alpha(G_{1/2}(n,r,s))=\Theta\left(\alpha(G(n,r,s))\log n\right)$.

If r=1, s=0, then we have already cited the much subtler classical result.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a value $\frac{c}{n}$, where c>1. Let $d=\frac{1}{1-p}$. Then w.h.p. $\alpha(G_p(n,1,0))\sim 2\log_d(np)$.

Remind that

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013-2016)

Let r,s be fixed as $n\to\infty$. If $r\leqslant 2s+1$, then w.h.p. $\alpha(G_{1/2}(n,r,s))=\Theta\left(\alpha(G(n,r,s))\log n\right)$.

If r = 1, s = 0, then we have already cited the much subtler classical result.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a value $\frac{c}{n}$, where c>1. Let $d=\frac{1}{1-p}$. Then w.h.p. $\alpha(G_p(n,1,0))\sim 2\log_d(np)$.

There are only two more cases where the Θ notation is replaced by the \sim one.

Remind that

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013-2016)

Let r,s be fixed as $n\to\infty$. If $r\leqslant 2s+1$, then w.h.p. $\alpha(G_{1/2}(n,r,s))=\Theta\left(\alpha(G(n,r,s))\log n\right)$.

If r = 1, s = 0, then we have already cited the much subtler classical result.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a value $\frac{c}{n}$, where c>1. Let $d=\frac{1}{1-p}$. Then w.h.p. $\alpha(G_p(n,1,0))\sim 2\log_d(np)$.

There are only two more cases where the Θ notation is replaced by the \sim one.

Theorem

(Pyaderkin, 2016) W.h.p. $\alpha(G_{1/2}(n,3,1)) \sim 2\alpha(G(n,3,1)) \log_2 n$.

Remind that

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013–2016)

Let r,s be fixed as $n\to\infty$. If $r\leqslant 2s+1$, then w.h.p. $\alpha(G_{1/2}(n,r,s))=\Theta\left(\alpha(G(n,r,s))\log n\right)$

If r=1, s=0, then we have already cited the much subtler classical result.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a value $\frac{c}{n}$, where c>1. Let $d=\frac{1}{1-p}$. Then w.h.p. $\alpha(G_p(n,1,0))\sim 2\log_d(np)$.

There are only two more cases where the Θ notation is replaced by the \sim one.

Theorem

(Pyaderkin, 2016) W.h.p. $\alpha(G_{1/2}(n,3,1)) \sim 2\alpha(G(n,3,1)) \log_2 n$. (Kiselev, Derevyanko, 2017) W.h.p. $\alpha(G_{1/2}(n,2,1)) \sim \alpha(G(n,2,1)) \log_2 n$.

Let us skip rather cumbersome cases of arbitrary r,s and concentrate on Kneser's graphs $(r>1,\,s=0).$

Let us skip rather cumbersome cases of arbitrary r,s and concentrate on Kneser's graphs $(r>1,\,s=0).$

Lovász, 1978: if $r \leqslant n/2$, then $\chi(G(n,r,0)) = n-2r+2$.

Let us skip rather cumbersome cases of arbitrary r,s and concentrate on Kneser's graphs $(r>1,\,s=0)$.

Lovász, 1978: if $r \leqslant n/2$, then $\chi(G(n,r,0)) = n-2r+2$.

Very simply the chromatic number of G(n,r,0) is not so stable as the independence number: w.h.p. even $\chi(G_{1/2}(n,r,0)) < n-2r+2$. However

Let us skip rather cumbersome cases of arbitrary r,s and concentrate on Kneser's graphs $(r>1,\,s=0).$

Lovász, 1978: if $r \le n/2$, then $\chi(G(n, r, 0)) = n - 2r + 2$.

Very simply the chromatic number of G(n,r,0) is not so stable as the independence number: w.h.p. even $\chi(G_{1/2}(n,r,0)) < n-2r+2$. However

Theorem (Kupavskii, 2016)

For many different n, r, p, w.h.p. $\chi(G_p(n, r, 0)) \sim n - 2r + 2$.

Let us skip rather cumbersome cases of arbitrary r,s and concentrate on Kneser's graphs $(r>1,\,s=0).$

Lovász, 1978: if $r \leqslant n/2$, then $\chi(G(n,r,0)) = n-2r+2$.

Very simply the chromatic number of G(n,r,0) is not so stable as the independence number: w.h.p. even $\chi(G_{1/2}(n,r,0))< n-2r+2$. However

Theorem (Kupavskii, 2016)

For many different n, r, p, w.h.p. $\chi(G_p(n, r, 0)) \sim n - 2r + 2$.

For example, if g(n) is any growing function and r is arbitrary in the range between 2 and $\frac{n}{2}-g(n)$, then for any fixed $p,\ \chi(G_p(n,r,0))\sim n-2r+2$.

Let us skip rather cumbersome cases of arbitrary r,s and concentrate on Kneser's graphs $(r>1,\,s=0).$

Lovász, 1978: if $r\leqslant n/2$, then $\chi(G(n,r,0))=n-2r+2$.

Very simply the chromatic number of G(n,r,0) is not so stable as the independence number: w.h.p. even $\chi(G_{1/2}(n,r,0)) < n-2r+2$. However

Theorem (Kupavskii, 2016)

For many different n, r, p, w.h.p. $\chi(G_p(n, r, 0)) \sim n - 2r + 2$.

For example, if g(n) is any growing function and r is arbitrary in the range between 2 and $\frac{n}{2}-g(n)$, then for any fixed $p, \chi(G_p(n,r,0))\sim n-2r+2$.

Many improvements by Kupavskii and by Alishahi and Hajiabolhassan.

Theorem (Kiselev, Kupavskii, 2019+)

If $r \geqslant 3$, then w.h.p.

$$n - c_1 \sqrt[2r-2]{\log_2 n} \leqslant \chi(G_{1/2}(n,r,0)) \leqslant n - c_2 \sqrt[2r-2]{\log_2 n}.$$

Theorem (Kiselev, Kupavskii, 2019+)

If $r \geqslant 3$, then w.h.p.

$$n - c_1 \sqrt[2r-2]{\log_2 n} \leqslant \chi(G_{1/2}(n,r,0)) \leqslant n - c_2 \sqrt[2r-2]{\log_2 n}.$$

If r=2, then w.h.p.

$$n - c_1 \sqrt[2]{\log_2 n \cdot \log_2 \log_2 n} \leqslant \chi(G_{1/2}(n,r,0)) \leqslant n - c_2 \sqrt[2r-2]{\log_2 n \cdot \log_2 \log_2 n}.$$

A general result

A general result

Theorem (A.M., 2017)

Let $G_n=(V_n,E_n), n\in\mathbb{N}$, be a sequence of graphs. Let $N_n=|V_n|, \ \alpha_n=\alpha(G_n)$. Let γ_n be the maximum number of vertices of G_n that are non-adjacent to both vertices of a given edge. Assume that the quantities N_n,α_n,γ_n are monotone increasing to infinity and there exists a function β_n such that

Then w.h.p. $\alpha(G_n, 1/2) \sim \alpha(G_n)$.