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Theorem

The adjacency spectrum is symmetric around 0

if and only if the graph is bipartite



adjacency spectrum

{−1−
√
3 , −1 , −1 , 1−

√
3 , −1 +

√
3 , 1 , 1 , 1 +

√
3}

Theorem (Coulson, Rushbrooke 1940, Sachs 1966)

The adjacency spectrum is symmetric around 0

if and only if the graph is bipartite
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λ1 ≥ . . . ≥ λn are the adjacency eigenvalues of G

Theorem

G has n vertices, 1
2

n∑
i=1

λ2i edges and 1
6

n∑
i=1

λ3i triangles

Theorem

G is regular if and only if λ1 equals the average degree
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λ1 ≥ . . . ≥ λn are the adjacency eigenvalues of G

Theorem

G has n vertices, 1
2

n∑
i=1

λ2i edges and 1
6

n∑
i=1

λ3i triangles

Theorem

G is regular if and only if λ1 equals 1
n

n∑
i=1

λ2i m

Drawback

Spectrum does not tell everything
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8 vertices, 10 edges, bipartite

Can the bipartition have parts of unequal size?
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8 vertices, 10 edges, bipartite

Can the bipartition have parts of unequal size? NO!
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8 vertices, 10 edges, bipartite with parts of size 4
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8 vertices, 10 edges, bipartite with parts of size 4
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0 0 0 0 1 1 1 1
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8 vertices, 10 edges, bipartite with parts of size 4
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0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 1
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Observation

The degree sequence of a graph is not determined by
the adjacency spectrum

Question

Are the sizes of the two parts of a bipartite graph
determined by the adjacency spectrum?



Observation

The degree sequence of a graph is not determined by
the adjacency spectrum

Question

Are the sizes of the two parts of a bipartite graph
determined by the adjacency spectrum?

General answer is NO!
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both graphs have adjacency spectrum

{−2, 0, 0, 0, 2}



Problem (Zwierzyński 2006)

Can one determine the size of a bipartition given only
the spectrum of a connected bipartite graph?



Problem (Zwierzyński 2006)

Can one determine the size of a bipartition given only
the spectrum of a connected bipartite graph?

Theorem (van Dam, WHH 2008)

NO!
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NOT determined by the adjacency spectrum are:

• being connected

• being a tree

• the girth



Laplacian (matrix)
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3 -1 -1 -1 0 0
-1 2 0 0 0 -1
-1 0 2 0 0 -1
-1 0 0 3 -1 -1
0 0 0 -1 1 0
0 -1 -1 -1 0 3
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0 = µ1 ≤ . . . ≤ µn are the Laplacian eigenvalues of G

Theorem

• G has 1
2

n∑
i=2

µi edges, and 1
n

n∏
i=2

µi spanning trees

• the number of connected components of G equals
the multiplicity of 0

Theorem

G is regular if and only if n
n∑

i=2

µi(µi − 1) = (
n∑

i=2

µi)
2
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NOT determined by the Laplacian spectrum are:

• number of triangles

• bipartite

• degree sequence

• girth



If G is regular of degree k , then L = kI − A
hence µi = k − λi for i = 1 . . . n

Properties determined by one spectrum are also
determined by the other spectrum

For regular graphs the following are determined by
the spectrum:

• number of vertices, edges, triangles; bipartite

• number of spanning trees, connected components



If G is regular of degree k , then L = kI − A
hence µi = k − λi for i = 1 . . . n

Properties determined by one spectrum are also
determined by the other spectrum

For regular graphs the following are determined by
the spectrum:

• number of vertices, edges, triangles; bipartite

• number of spanning trees, connected components

• degree sequence

• girth



Strongly regular graph SRG(n, k , λ, µ)
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A2 = kI + λA + µ(J − I − A)

(A− rI )(A− sI ) = µJ , r + s = λ− µ, rs = µ− k

Every adjacency eigenvalue is equal to k , r , or s



Example SRG(16, 9, 2, 4); Latin square graph

A C B D

D A C B

B D A C

C B D A

vertices: entries of the Latin square

adjacent: same row, column, or letter

adjacency spectrum {(−3)6, 19, 9}



Example SRG(16, 9, 2, 4); Latin square graph

A C B D

D A C B

B D A C

C B D A

A C B D

C A D B

B D A C

D B C A

vertices: entries of the Latin square

adjacent: same row, column, or letter

adjacency spectrum {(−3)6, 19, 9}



Theorem (Shrikhande, Bhagwandas 1965)

G is strongly regular

if and only if

G is regular and connected and has exactly three
distinct eigenvalues, or G is regular and disconnected
with exactly two distinct eigenvalues∗

∗ i.e. G is the disjoint union of m > 1 complete graphs of order ` > 1



Incidence graph of a symmetric (v , k , λ)-design

bipartite
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Adjacency spectrum

{−k ,−
√
k − λ(v−1),

√
k − λ(v−1), k}



Example Heawood graph, the incidence graph of the
unique symmetric (7, 3, 1)-design (Fano plane)

A =

[
O N
N> O

]
where N =



1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

1 0 0 0 1 1 0

0 1 0 0 0 1 1

1 0 1 0 0 0 1


Spectrum {−3, −

√
2
6
,
√

2
6
, 3}



Theorem (Cvetković, Doob, Sachs 1984)

G is incidence graph of a symmetric (v , k , λ)-design

if and only if G has adjacency spectrum

{−k , −
√
k − λ(v−1),

√
k − λ(v−1), k}

Corollary There exists a projective plane of order m
if and only if there exists a graph with adjacency
spectrum

{−m − 1, −
√
m

m(m+1)
,
√
m

m(m+1)
, m + 1}



For the following properties there exist a pair of
cospectral regular graphs where one graph has the
property and the other one not



For the following properties there exist a pair of
cospectral regular graphs where one graph has the
property and the other one not

• being distance-regular of diameter d ≥ 3
(d ≥ 4 Hoffman 1963, d = 3 WHH 1992)

(A distance-regular graphs of diameter 2 is strongly regular)
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• being distance-regular of diameter d ≥ 3
(d ≥ 4 Hoffman 1963, d = 3 WHH 1992)
• having diameter d ≥ 2 (WHH, Spence 1995)
• having a perfect matching (n2 disjoint edges)

(Blázsik, Cummings, WHH 2015)
• having vertex connectivity ≥ 3 (WHH 2019)



For the following properties there exist a pair of
cospectral regular graphs where one graph has the
property and the other one not

• being distance-regular of diameter d ≥ 3
(d ≥ 4 Hoffman 1963, d = 3 WHH 1992)
• having diameter d ≥ 2 (WHH, Spence 1995)
• having a perfect matching (n2 disjoint edges)

(Blázsik, Cummings, WHH 2015)
• having vertex connectivity ≥ 3 (WHH 2019)

• having edge connectivity ≥ 6 (WHH 2019)



For most NP-hard properties (chromatic number,
clique number etc.) it is not hard to find a pair of
cospectral regular graphs, where one has the property,
and the other one not.



For most NP-hard properties (chromatic number,
clique number etc.) it is not hard to find a pair of
cospectral regular graphs, where one has the property,
and the other one not.

Problem Does there exist a pair of cospectral regular
graphs of degree k , where one has chromatic index
(edge chromatic number) k , and the other k + 1?



Characterizations from the spectral point of view

Proposition G has two distinct adjacency eigenvalues
if and only if G is the disjoint union of complete
graphs having the same order m > 1

Proposition G has two distinct Laplacian eigenvalues
if and only if G is the disjoint union of complete
graphs having the same order m > 1, possibly
extended with some isolated vertices



Can we characterize the graphs with three distinct
adjacency eigenvalues?



Can we characterize the graphs with three distinct
adjacency eigenvalues?

If the graphs are regular and connected, then they are
precisely the connected strongly regular graphs

If regularity is not assumed, then there exist other
examples, but no characterization is known



Theorem (van Dam, WHH 1998)

A connected graph G has three distinct Laplacian
eigenvalues if and only if µ and µ are constant



Theorem (van Dam, WHH 1998)

A connected graph G has three distinct Laplacian
eigenvalues if and only if µ and µ are constant
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Theorem (van Dam, WHH 1998)

A connected graph G has three distinct Laplacian
eigenvalues if and only if µ and µ are constant
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If G is regular of degree k , then µ = n − 2k + λ, and
G is an SRG(n, k , λ, µ)



Example n = 7, µ = 1, µ = 2
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Theorem (Cameron, Goethals, Seidel, Shult 1976)

A graph G has least adjacency eigenvalue ≥ −2 if
and only if G is a generalized line graph, or G belongs
to a finite set of exceptional graphs (n ≤ 36)

Book: Spectral generalisations of line graphs,
Cvetković, Rowlinson, Simić 2004



Proposition G has least adjacency eigenvalue ≥ −1
if and only if G is the disjoint union of complete
graphs



Proposition G has least adjacency eigenvalue ≥ −1
if and only if G is the disjoint union of complete
graphs

Proof 1 A + I is positive semi-definite, so it is the
Gram matrix of a set of unit vectors with inner
product 0 or 1



Proposition G has least adjacency eigenvalue ≥ −1
if and only if G is the disjoint union of complete
graphs

Proof 1 A + I is positive semi-definite, so it is the
Gram matrix of a set of unit vectors with inner
product 0 or 1

Proof 2 The path P3 = u u u has spectrum
{−
√

2, 0,
√

2}, and by interlacing it can not be an
induced subgraph of G
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eπi + 1 = 0 Euler!
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a2 + b2 = c2 Pythagoras!

eπi + 1 = 0 Euler!

1 = 0 !


