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Reconstruction

In 1960 Ulam asked

Is a graph G uniquely determined by

{G \ x |x ∈ V (G)}
The G \ x are the vertex-deleted subgraphs and

{G \ x |x ∈ V (G)} is the deck.

Reconstruction Conjecture or Ulam’s Conjecture

Any two graphs on at least three vertices with the same deck are
isomorphic.

Open for finite graphs.
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Weak reconstruction

When reconstructing a class of graphs, the problem partitions into

recognition and weak reconstruction.

Recognition consists of showing that membership in the class is

determined by the deck,

weak reconstruction consists of showing that nonisomorphic

members of the class have different decks.

2



In 1973 Dörfler∗ showed that Ulam’s conjecture holds for finite
non-trivial Cartesian products.

In 1996 Žerovnik and I showed† that the weak reconstruction
problem can already be solved from a single vertex-deleted subgraph

for nontrivial, connected finite or infinite Cartesian products.

in 1999 Hagauer and Žerovnik‡ published an algorithm for weak
reconstruction. They claimed complexity

O(mn · (∆2 +m logn)),
where m is the size, n the order and ∆ the maximum degree of the

graph.
∗Colloq. Math. Soc. János Bolyai, Vol. 10, Keszthely, Hungary (1973).
†Discrete Mathematics 150 (1996).
‡J. Combin. Inform. System Sci. 24 (1999).
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In 2013 Kupka announced an algorithm with complexity
O(∆2(∆2 +m).

Unfortunately, it is based on erroneous argument of Hagauer and
Žerovnik which was corrected by Marcin Wardyński. The corrected

complexity is O(mn+ ∆2(∆4 +m)).

But, Marcin Wardyński not only found the erroneous argument, he
also improved the complexity to O(m(∆2 + n)).

Note that the factor m logn in the algorithm of Hagauer and
Žerovnik comes from the complexity of finding the prime factors of
Cartesian product graphs, which was O(m logn) then. In 2007∗ it
was improved to O(m), and so the factor logn could be dropped.

∗Imrich and Peterin, Discrete Math. 307 (2007).
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Edge-reconstruction

In 1964 Harary introduced the Edge Reconstruction Conjecture:

Any two graphs with at least four edges that have the same deck of

edge-deleted subgraphs are isomorphic.

For products this was taken up by Dörfler 1974.

He showed that all nontrivial strong products and certain

lexicographic products can be reconstructed from the deck of all

edge-deleted subgraphs.

5



Weak edge-reconstruction

We show that the weak edge reconstruction problem can be solved

from a single edge-deleted subgraph for nontrivial, connected finite

or infinite Cartesian products.

For finite graphs G the reconstruction is possible in O(mn2) time,

where n is the order and m the size of G.
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The Cartesian product

The vertex set of the Cartesian product G12G2 is

V (G1)× V (G2) = {(x1, x2) |x1 ∈ V (G1), x2 ∈ V (G2)}

and its edge-set is the set of all pairs {(x1, x2)(y1, y2), where
x1y1 ∈ E(G1), x2 = y2 or x1 = y1, x2y2 ∈ E(G2)

The product is commutative, associative and has K1 as a unit.

Given ` graphs we can thus write G1 � · · · �G` for their product and
consider the vertices as vectors (x1, . . . x`), where xi ∈ V (Gi).

Then x = (x1, . . . x`) and y = (y1, . . . y`) are adjacent exactly if
∃k such that xkyk ∈ V (Gk) and xi = yi for i 6= k.
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Prime factorization

The xi are the coordinates of x

two vertices are adjacent iff they differ in exactly one coordinate.

We also call xi the projection pi(x) of x to V (Gi).

A graph G 6= K1 is prime or indecomposable if G ∼= A2B implies that

either A ∼= K1 or B ∼= K1.

Every connected graph has a unique prime factorization with respect

to the Cartesian product, up to isomorphisms and the order of the

factors∗.
∗G. Sabidussi 1960, V.G. Vizing 1963.

8



Infinitely many factors

This easily extends to infinitely many factors

Let Gι, ι ∈ I, be a finite or infinite set of graphs and

X the set of all functions x : I →
⋃
ι∈I V (Gι) where x : ι 7→ xι ∈ V (Gι).

Then the Cartesian product

G =
∏
ι∈I

Gι

has X as its set of vertices, and xy ∈ E(G)

if ∃κ ∈ I such that xκyκ ∈ E(Gκ) and xι = yι for all ι ∈ I \ {κ}.
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The weak Cartesian product

The product of finitely many graphs is connected if and only if every
factor is.

However, a product of infinitely many nontrivial graphs must be
disconnected because it contains vertices differing in infinitely many

coordinates.

No two such vertices can be connected by a path of finite length.

We call the connected components of G =
∏
ι∈I Gι containing

a ∈ V (
∏
ι∈I Gι) the weak Cartesian product

G =
a∏
ι∈I

Gι
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Prime factorization with respect to the weak Cartesian product

To every connected, infinite graph G there exists a set of prime
graphs {Gι | ι ∈ I}, which are unique up to isomorphisms, such that

G =
a∏
ι∈I

Gι

for an appropriate a ∈ V (
∏
ι∈I Gι).∗

The weak Cartesian product may markedly differ from finite ones.

For example, finite graphs are vertex transitive iff all factors are, but∏a
ι∈I Gι can be vertex transitive even when

all factors are asymmetric.
∗Miller 1970, Imrich 1971.
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Product coloring

Let a = (a1, . . . , ak) in G = G1 � · · · �Gk. Then the set of vertices

{(a1, . . . ai−1, x, ai+1, . . . , ak) |x ∈ V (Gi)}

induces a subgraph of G that is isomorphic to Gi.

We call it the Gi-layer Gai through a.

We color the edges of G = G1 � · · · �Gk with k colors c1 to ck,

such that the edges of the Gi-layers have color ci.

This is the product coloring of G = G1 � · · · �Gk. Clearly it depends

on the particular representation of G.

12



For example, consider

It also shows that

automorphisms map sets of layers with respect to a prime factor

into sets of layers with respect to prime factor.

Sets with respect to isomorphic factors can be interchanged.
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Triangles are monochromatic in any product coloring.

For, let abc be a triangle. Let ab have color i and bc color j

. Then a differs from c in coordinate i and j, but a, c are adjacent

and can differ in only one coordinate. Hence i = j.

Lemma (Unique Square Lemma) Let e, f be two incident edges

of G12G2 with different product colors.

Then there exists exactly one square in G12G2 containing e and f .

This square has no diagonals.

It implies that opposite edges of any square have the same color.
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An easy consequence of the Unique Square Lemma is the following.

If there is an edge from a vertex of Gai to one of Gbi, then the edges

between Gai and Gbi induce an isomorphism between Gai and Gbi.

Convexity

A subgraph W ⊆ G is convex in G if every shortest G-path between

vertices of W lies entirely in W .

Proposition A subgraph W of G = G12 . . .2Gk is convex if and only

if W = U12 . . .2Uk, where each Ui is convex in Gi.

Every layer Gai is convex in G.
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Edge deleted nontrivial Cartesian products are prime

Let G be graph and e ∈ E(G).

Then the edge-deleted graph G \ e is defined on the same set of
vertices as G and E(G \ e) = E(G) \ {e}.

Lemma Let G be a nontrivial Cartesian product and e ∈ E(G). Let
e = ad and abcda be a product square in G. If G \ e is a Cartesian
product, then the path abcd must be monochromatic in any product
coloring of G \ e.

ea

b c

d
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Lemma Let G be a nontrivial Cartesian-product and e ∈ E(G). Then

G \ e is prime.

Proof (Outline) Let G = A2B and let cA, cB be the product colors

of G. Suppose that e is contained in an A-layer and set e = ad,

where abcda is a product square of A �B.

We assume that G \ e is not prime, say G \ e = X � Y , with product

colors cX , cY , and lead this to a contradiction.
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ea b

dc

a’ d’

By the previous Lemma all edges of the path abcd in G \ e have the

same color in any product coloring of G \ e. We choose the notation

such that they are in an X-layer, so their color is cX.

There must be at least one edge incident to b with color cY . Let

this edge be aa′.
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Now we have to consider two different cases regarding the position

of aa′ in G, namely whether aa′ belongs to an A-layer or to a B-layer.

Consider the case where aa′ is in a B-layer.

e

a’ d’

a

b c

d

b’ c’
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And now the case where aa′ is in an A-layer.

e

a’ d’

a d
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Reconstruction when G does not have K2 as a factor

Lemma Let G be a nontrivial Cartesian product and f an edge not
in G \ e. If G does not have K2 as a factor, then G \ e ∪ f is prime
unless f = e.

Proof Let G = A �B and H = G \ e ∪ f be a Cartesian product
X � Y .

Let f = ad, G \ e ∪ f = X � Y and f be in an X-layer. f must be in a
product square, say abcda, and where bc also has color cX, and ab, cd

have color cY .

Now we ask whether the edges ab and bc have different colors in the
original graph G.
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a’ d’

a

b c

da

b c

df f

If that were the case, then ab and bc must span a product square

abcg in G, but then the edges ab and bc would span two different

squares in G \ e ∪ f , which is not possible.
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Similarly we argue that there can be no product-square bcdg in G,

hence the path abcd is monochromatic in G. Without loss of

generality we can assume that abcd is colored cA.

Clearly there must be a path a′b′c′d′ and edges aa′, bb′, cc′, dd′ in G,

where abcd has color cA and the other edges have color cB. Let R be

this subgraph of G.

a’ d’

a

b c

d

a’ d’

a

b c

df
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If the edge a′d′ is in G, then it is in the A-layer that contains a′b′c′d′

by convexity. Clearly this means that ad is also in G, because the

edges aa′, bb′, cc′, dd′ induce a (partial) isomorphism between the

A-layer through a′ and that through a. If e = ad, then f = e and H

and G are isomorphic. If ad 6= e, then f joins two vertices of E(G \ e),

contrary to assumption. So we can assume that a′d′ 6∈ E(G).

Assume now that R is in H. Because a′b′ and c′d′ have color cY , but

not b′c′, there are product squares a′b′c′x′a′ and b′c′d′y′ in H. Neither

x′ 6= d′ nor y′ 6= a′ can hold, because a′d′ 6∈ E(G). Furthermore x 6= y,

otherwise cX would be equal to cY .
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By convexity x′ and y′ are in Aa
′
. But then, by the isomorphism of

layers, we have vertices x, y in Aa and squares abcxa and bcdy′. At

least one of those squares does not contain e, and is thus in H. It

contains two edges that are also in abcd, in contradiction to the

Unique Square Lemma.

Hence, R is not in H, which means that one of its edges is e. Notice

that this implies f 6= e. Because abcd is in H we have the following

possibilities for e: e = aa′, dd′, e = bb′, cc′, e = a′b′, cc′, or e = b′c′. By

the symmetry of R it suffices to treat e = aa′, bb′, a′b′, and e = b′c′.

We will show that H is prime in all these cases.

Consider the case e = aa′
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a’ d’

a

b c

d

a’ d’

a

b c

d

b’ c’

x

x

x

x

Posssible positions of e in R The case e = aa′
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Clearly b′c′ and c′d′ have different colors in H and there is a poduct

square b′c′d′y′b′.

Because a′d′ is not in E(G) the vertex y′ 6= a′.

By the isomorphism of layers there is a square bcdy without diagonals

in Aa, contrary to the uniqueness of the product square abcda.

The other cases are treated similarly.
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Reconstruction when G has a factor K2

In the above proof the fact that G has no factor K2 is only used
when e = b′c′.

Then one gets through if B 6= K2.

If B = K2, but not Y , then one can interchange the roles of
G and G \ e ∪ f ,

resp. the roles of e and f .

In all these cases G \ e ∪ f is prime unless f = e.

Thus the reconstruction is unique in a very strong sense:
One can identify exactly two vertices a, b in G \ e such that G \ e ∪ f

is a product.
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When G has at least two factors K2, then several choices of f are

possible, but the reconstruction is still unique up to isomorphisms.
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Theorem (Main Theorem) Let G be a connected, nontrivial Carte-

sian product and e an edge of G.

Suppose insertion of an edge f into G \ e yields a Cartesian product

H = G \ e ∪ f . Then H is isomorphic to G.

If G has at most one factor K2, then f = e. If G has more than one

factor K2, then one can characterize all possibilities for the insertion

of f .
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Weak Cartesian product

This result also holds for infinite graphs, we never needed the

finiteness of the factors.
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Reconstruction complexity

Given a graph G \ e one can try all possible extensions by an edge f

and check whether they yield a Cartesian product.

If the order of G is n, there are O(n2) possibilities for f .

Because prime factorization is linear time and space in the size m of

G∗, the reconstruction is possible in O(mn2) time and space.

Within the same time and space complexities one can also

determine all possible reconstructions.

∗Peterin and I, 2007.
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Compare this with the fact that the complexity for weak (vertex)

reconstruction is O(m(∆2 + n)).

So one should be able to improve the above complexity of O(mn2)

for edge-reconstruction.
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What else is there to do for weak reconstruction ?

One can show that deletion of several edges with a common

endpoint from a Cartesian product yields a prime graph.

If one deletes all incident edges, then one has the case of a vertex

deleted subgraph, which has been treated, also from the algorithmic

side.

The case when at least two edges incident with a vertex are deleted,

but not all, is open.
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And what is open for recognition?

The recognition for infinite connected Cartesian products is open.

The edge-recognition for finite and infinite Cartesian products is

also open.

Probably one does not need the entire deck.

35



THANK YOU FOR YOUR ATTENTION

36


