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Examples
A graph is...

triangle-free
- [3X13X25|X3 (Xl ~ X2) N (Xl ~ X3) N (X2 ~ X3)]
disconnected

aX laxay X(x) A (ﬁX(y))] A

[vxvy (XC) A X)) = (i ~ yl)}
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Predicates

o V={1...n}

e P: V™ —{0,1} — a predicate of arity m

e a graph G = (V/, E) represents the symmetric predicate:
P(x,y) =1 (or x ~ y) if and only if {x,y} € E

e P is called unary if its arity equals 1

e a subset S C V represents the unary predicate:

P(x)=1ifandonly if x € S

Variable and predicate symbols

> X, ¥, X1, X, ...are FO variables;
» X is a k-ary predicate variable symbol (or SO variable)
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First order sentences

relational symbols ~, =;

logical connectivities =, =, <, V, A;
variables x, y, x{, ...;
quantifiers V, 4
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Vxdy (x=y)
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Second order sentences

relational symbols ~, =;

logical connectivities =, =, &V, A;

FO variables x, y, x1, ...;

SO variables X, Z, Xq, ... with fixed arities;

quantifiers V, 4

X [VXHsz X(x,y) N (ly # z] = = X(x, z))] A

[vxvy (X(x,y) < X(y, X))]
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Monadic second order sentences

In monadic second order (MSQ) sentences only unary
variable predicates are allowed
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Monadic second order sentences

In monadic second order (MSQ) sentences only unary
variable predicates are allowed

VX [(X is a clique)A(VY [Y D X] = [Y is not a cquue])]

- [vX (=X(x) = Gy X(v) A (x ~ y))]

An existential monadic second order (EMSQ) sentence is
a monadic sentence such that all SO variables are in the
beginning and bounded by existential quantifiers
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Expressing graph properties

A property is a set of graphs closed under isomorphism
relation
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» If property P is defined in FO with k variables, then it
is verified on n-vertex graph in O(n¥) time.
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Expressing graph properties

A property is a set of graphs closed under isomorphism
relation

A sentence ¢ defines a property P, if

GeP& GEy

» If property P is defined in FO with k variables, then it
is verified on n-vertex graph in O(n¥) time.

» Fagin, 1973: P belongs to NP class if and only if P is
defined in ESO.
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Certain properties

» Defined in FO:
e to be complete
e to contain an isolated vertex
e the diameter equals 3

8/34



Certain properties

» Defined in FO:
e to be complete
e to contain an isolated vertex
e the diameter equals 3

» Defined in MSO but not in FO:
e to be connected
e to be bipartite

8/34



Certain properties

» Defined in FO:
e to be complete
e to contain an isolated vertex
e the diameter equals 3

» Defined in MSO but not in FO:
e to be connected
e to be bipartite
» Defined in SO but not in MSO:
e to have even number of vertices
e to contain a Hamiltonian cycle

8/34



Certain properties

» Defined in FO:
e to be complete
e to contain an isolated vertex
e the diameter equals 3

» Defined in MSO but not in FO:
e to be connected
e to be bipartite

» Defined in SO but not in MSO:
e to have even number of vertices
e to contain a Hamiltonian cycle

» Containing k-clique is defined in FO with k variables
but not in FO with k — 1 variables

8/34



Probabilistic approach

Consider a logic £ and a graph property P.
Question: is P defined in £7

9/34



Probabilistic approach

Consider a logic £ and a graph property P.
Question: is P defined in £7?

Let

1. for every ¢ € L, either, for almost all graphs on

{1,...,n}, @ is true, or, for almost all graphs on
{1,...,n}, pis false;

2. the fraction of graphs on {1,...,n} that have the
property P does not converge neither to 0 nor to 1.
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Probabilistic approach

Consider a logic £ and a graph property P.
Question: is P defined in £7?

Let

1. for every ¢ € L, either, for almost all graphs on

{1,...,n}, @ is true, or, for almost all graphs on
{1,...,n}, pis false;

2. the fraction of graphs on {1,...,n} that have the
property P does not converge neither to 0 nor to 1.

Then the answer is negative.
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FO zero-one law

Theorem (Glebskii, Kogan, Liogon’kii, Talanov,
1969;

Fagin, 1976)

Let ¢ be a FO sentence.

Let X, be the number of all graphs G on {1, ..., n} such
that G = .

Then

X X
either —~ — 0, or — — 1.

2(3) 2(3)
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FO zero-one law

Theorem (Glebskii, Kogan, Liogon’kii, Talanov,
1969;

Fagin, 1976)

Let ¢ be a FO sentence.
Let X, be the number of all graphs G on {1, ..., n} such
that G = .
Then
either ﬁ — 0, or ﬁ — 1.

2(3) 2(3)

Or, in other words, G(n, %) obeys FO 0-1 law.
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Ehrenfeucht game

e G, H — two graphs

e two players: Spoiler and Duplicator
e k — number of rounds
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Ehrenfeucht game

e G, H — two graphs

e two players: Spoiler and Duplicator
e k — number of rounds

In every round, Spoiler chooses a graph (either G or H)
and a vertex in this graph; Duplicator chooses a vertex in
another graph.

After the k-th round, xq, ..., x, are chosen in G and

Y1, ..., Yk are chosen in H.

Duplicator wins if and only if

fofx,...,xt = {n,. .,y st f(x) =y,
is isomorphism of G|y, . w1 and Hlg, ..
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Ehrenfeucht theorem

Quantifier depth of a sentence is the maximum number
of nested quantifiers
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Ehrenfeucht theorem

Quantifier depth of a sentence is the maximum number
of nested quantifiers

Example

g.d. of

equals 3
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Ehrenfeucht theorem

Theorem (A. Ehrenfeucht, 1960)

Duplicator has a winning strategy in Ehrenfeucht game on
G, H in k rounds

if and only if

for every FO sentence ¢ of q.d. k, either ¢ is true on
both G, H, or ¢ is false on G, H

13 /34



Ehrenfeucht theorem
Theorem (A. Ehrenfeucht, 1960)

Duplicator has a winning strategy in Ehrenfeucht game on
G, H in k rounds

if and only if

for every FO sentence ¢ of q.d. k, either ¢ is true on
both G, H, or ¢ is false on G, H

Corollary: G(n, %) obeys FO 0-1 law if and only if, for
every k, with asymptotical probability 1 Duplicator has a

winning strategy in Ehrenfeucht game on two independent
graphs G(n,1) and G(m, 1) in k rounds.
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k-extension property

A graph has k-extension property if, for every pair of
disjoint sets of vertices A, B, |A| + |B| < k, there exists a

vertex outside A LI B adjacent to every vertex of A and
non-adjacent to every vertex of B.
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Spencer’s proof

» Almost all graphs have k-extension property
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Spencer’s proof

» Almost all graphs have k-extension property

» If both G, H have k-extension property, then
Duplicator has a winning strategy in Ehrenfeucht
game on G, H in kK + 1 rounds

G(n,1) obeys FO 0-1 law
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MSO logic of almost all graphs
Theorem (M. Kaufmann, S. Shelah, 1985)

There exists a MSO sentence y such that P(G(n, 2) E ¢)
does not converge.
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MSO logic of almost all graphs
Theorem (M. Kaufmann, S. Shelah, 1985)

There exists a MSO sentence y such that P(G(n, 2) E ¢)
does not converge.

J.-M. Le Bars, 2001

There exists an EMSO sentence ¢ such that
P(G(n,1) = ) does not converge.

Conjecture (Le Bars, 2001): G(n, 3) obeys 0-1 law for
EMSO sentences with 2 FO variables

16 / 34



Le Bars conjecture is false

Theorem (S. Popova, Zhukovskii, 2019)

There exists an EMSQO sentence  with 1 monadic

variable and 2 FO variables such that P(G(n, 3) = ¢)
does not converge.
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Le Bars conjecture is false
Theorem (S. Popova, Zhukovskii, 2019)

There exists an EMSO sentence ¢ with 1 monadic
variable and 2 FO variables such that P(G(n, 3) = ¢)
does not converge.

The property

There are two disjoint cliques such that
» there are no edges between them,
» there is a common neighbor of vertices of both cliques,

» every vertex outside both cliques has neighbors in
both.

17/ 34



Monadic Ehrenfeucht game

e G, H — two graphs
e two players: Spoiler and Duplicator
e k — number of rounds
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Monadic Ehrenfeucht game

e G, H — two graphs
e two players: Spoiler and Duplicator
e k — number of rounds

In every round, Spoiler chooses either a vertex, or a set of

vertices in this graph; Duplicator chooses a vertex, or a
set of vertices in another graph.

Duplicator chooses a vertex if and only if a vertex is
chosen by Spoiler.

X1,...,Xs; X1,...,X, are chosen in G;

Yi,...,Ys; Y1i,..., Y, are chosen in H.

18 / 34



Monadic Ehrenfeucht theorem
Duplicator wins if and only if

1. xi~x & yi~y;,
2. xeXj &y ey
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Monadic Ehrenfeucht theorem

Duplicator wins if and only if

1. xi~x & yi~y;,

2.xeXj ey ey,

G(n,3) obeys MSO 0-1 law if and only if, for every k,
with asymptotical probability 1 Duplicator has a winning

strategy in MSO Ehrenfeucht game on two independent
graphs G(n, 3) and G(m, 3) in k rounds.
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Monadic Ehrenfeucht theorem

Duplicator wins if and only if

1. Xi ~ Xj <= Yi~ Y

2. xeXj &y ey

G(n,3) obeys MSO 0-1 law if and only if, for every k,

with asymptotical probability 1 Duplicator has a winning
strategy in MSO Ehrenfeucht game on two independent

graphs G(n, 3) and G(m, 3) in k rounds.
In the case of EMSOQ, Spoiler always plays in one graph
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Binomial model

G(n, p):
» {1,...,n} — set of vertices

» all edges appear independently with probability p
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Binomial model

G(n, p):
» {1,...,n} — set of vertices

» all edges appear independently with probability p

for a graph H with e edges,
P(G(n,p) = H) = po(1 — p)) ¢
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Zero-one laws for dense random graphs
Generalization of Glebskii et al. and Fagin’s 0-1 law

Let Voo > 0 min{p,1 — p}n® — co. Then G(n, p) obeys
FO 0-1 law.
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Zero-one laws for dense random graphs

Generalization of Glebskii et al. and Fagin’s 0-1 law

Let Voo > 0 min{p,1 — p}n® — co. Then G(n, p) obeys
FO 0-1 law.

Generalization of Le Bars non-convergence result

Let Voo > 0 min{p,1 — p}n® — oo. Then G(n, p) does
not obey EMSQO convergence law.
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First order zero-one laws for sparse random graphs
S. Shelah, J. Spencer, 1988; J. Lynch, 1992

Let p = n~°.

22 /34



First order zero-one laws for sparse random graphs
S. Shelah, J. Spencer, 1988; J. Lynch, 1992

Let p = n~°.
» If « € Ry \ Q, then FO 0-1 law holds.

22 /34



First order zero-one laws for sparse random graphs
S. Shelah, J. Spencer, 1988; J. Lynch, 1992

Let p = n~°.
» If « € Ry \ Q, then FO 0-1 law holds.
» If « € QN (0, 1), then FO conv. law does not hold.

22 /34



First order zero-one laws for sparse random graphs
S. Shelah, J. Spencer, 1988; J. Lynch, 1992

(%

Let p = n~°.
» If « € Ry \ Q, then FO 0-1 law holds.

» If « € QN (0, 1), then FO conv. law does not hold.

» If @« = 1, then FO 0-1 law does not hold, but FO
convergence law holds.

22 /34



First order zero-one laws for sparse random graphs
S. Shelah, J. Spencer, 1988; J. Lynch, 1992

(%

Let p = n~°.
» If « € Ry \ Q, then FO 0-1 law holds.

» If « € QN (0, 1), then FO conv. law does not hold.

» If @« = 1, then FO 0-1 law does not hold, but FO
convergence law holds.

» If 1+ -5 < a <1+ £, then FO 0-1 law holds.

22 /34



First order zero-one laws for sparse random graphs
S. Shelah, J. Spencer, 1988; J. Lynch, 1992

(%

Let p = n~°.
» If « € Ry \ Q, then FO 0-1 law holds.

If « € @QN(0,1), then FO conv. law does not hold.

If @« = 1, then FO 0-1 law does not hold, but FO
convergence law holds.

If 14+ 1 < <14+, then FO 0-1 law holds.
If « > 2, then FO 0-1 law holds.

v

\4

v

\4

22 /34



First order zero-one laws for sparse random graphs
S. Shelah, J. Spencer, 1988; J. Lynch, 1992

(%

Let p = n~°.
» If « € Ry \ Q, then FO 0-1 law holds.

If « € @QN(0,1), then FO conv. law does not hold.

If @« = 1, then FO 0-1 law does not hold, but FO
convergence law holds.

If 14+ 1 < <14+, then FO 0-1 law holds.
If « > 2, then FO 0-1 law holds.

If o =1+ % then FO 0-1 law does not hold, but FO
convergence law holds.

v

\4

v

\4

v

22 /34



Monadic zero-one laws for sparse random graphs

«

Let p = n~
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«

Let p = n=°.
» (J. Tyszkiewicz, 1993) If « € (0,1), then MSO

convergence law does not hold.

» (T. Luczak, 2004) If a = 1, then MSO 0-1 law does
not hold, but MSO convergence law holds.
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Existential monadic zero-one laws for sparse random
graphs
Let p=n~

(67
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Random trees

T, chosen uniformly at random from the set of all trees
on{1l,...,n}

Theorem (G.L. McColm, 2002)
T, obeys MSO 0-1 law.
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The main tool

S is pendant in T, if there exists an edge in T such that
S is a component of T — e

26/ 34



The main tool

S is pendant in T, if there exists an edge in T such that
S is a component of T — e

» For every tree S, with asymptotical probability 1, T,
contains a pendant subtree isomorphic to S
» For every k, there exists K such that

if, for every tree S on at most K vertices,
T and F contain a pendant subtree isomorphic to S,

then Duplicator wins monadic Ehrenfeucht game on
G, H in k rounds.
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Uniform attachment model

e m =1 — random recursive tree (R.T. Smythe, H.M.
Mahmoud, 1995)

e For arbitrary m, considered by B. Bollobds, O. Riordan,
J. Spencer, G. Tusnddy in 2000
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Uniform attachment model

e m =1 — random recursive tree (R.T. Smythe, H.M.
Mahmoud, 1995)

e For arbitrary m, considered by B. Bollobds, O. Riordan,
J. Spencer, G. Tusnddy in 2000

> Go is m-clique on {1,..., m}

» §,.1 is obtained from G, by adding the vertex
v, = n+ m+ 1 and m edges from v, to G, chosen
uniformly at random

27 / 34



Logic of uniform attachment: m =1

m=1

For every tree S, with asymptotical probability 1, G,
contains a pendant subtree isomorphic to S
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Logic of uniform attachment: m =1

m=1

For every tree S, with asymptotical probability 1, G,
contains a pendant subtree isomorphic to S

G, obeys MSO 0-1 law
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Logic of uniform attachment: m > 2

If m> 2, then G, does not obey FO 0-1 law.

29 / 34



Logic of uniform attachment: m > 2

If m> 2, then G, does not obey FO 0-1 law.

The proof for m =2

Let X, be the number of K, \ e in G,,.

Let k be large enough, and g(k) = (%) be the maximum
possible number of K \ e in .

P(X, > g(k)) does not converge neither to 0, nor to 1.

29 /34



Logic of uniform attachment: m > 2

If m> 2, then G, does not obey FO 0-1 law.

The proof for m =2

Let X, be the number of K, \ e in G,,.

Let k be large enough, and g(k) = (%) be the maximum
possible number of K \ e in .

P(X, > g(k)) does not converge neither to 0, nor to 1.

If m > 3, consider K11

29 /34



Logic of uniform attachment: m > 2

If m> 2, then G, does not obey FO 0-1 law.

The proof for m =2

Let X, be the number of K, \ e in G,,.

Let k be large enough, and g(k) = (%) be the maximum
possible number of K \ e in .
P(X, > g(k)) does not converge neither to 0, nor to 1.

If m > 3, consider K11

What about convergence?
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The convergence

Theorem (Y. Malyshkin, Zhukovskii, 2019++)

For every m, G, obeys FO convergence law.
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The convergence

Theorem (Y. Malyshkin, Zhukovskii, 2019++)

For every m, G, obeys FO convergence law.

For an existential sentence ¢, P(G,11 = ) > P(S, = »)

G, obeys EFO convergence law
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The structure: crucial properties

A connected graph on v vertices is complex if it contains
at least v + 1 edges

Induced subgraph H = G is called separated if all its

vertices having degrees at least 2 are not adjacent to any
vertex outside H
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The structure: crucial properties
Let K, N be large

1.

2.

With probability at least 1 — ¢, all complex subgraphs
of G, on at most K vertices belong to |1, m
With asymptotical probability 1, for every admissible
tree T on at most K vertices, G, has a separated

subgraph isomorphic to T such that all its vertices are
outside {1,..., N}

. For every admissible connected unicyclic graph C,

the probability that G, has a separated subgraph
isomorphic to C such that all its vertices are outside
{1,..., N} converges
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Preferential attachment
R. Albert, A.-L. Barabasi, 1999,
B. Bollobas, O. Riordan, 2000:
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Preferential attachment
R. Albert, A.-L. Barabasi, 1999,
B. Bollobas, O. Riordan, 2000:

> Go is m-clique on {1,..., m}

» G,.1 is obtained from G, by adding the vertex
v, = n+ m+ 1 and m edges independently

» the probability that i-th edge connects v, with u is
proportional to degg (u) and equals

deg,(v)
m(n+ m—1)
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Logic of preferential attachment

» m=1: G, obeys MSO 0-1 law

34 /34



Logic of preferential attachment

» m=1: G, obeys MSO 0-1 law

»m=2:7

34 /34



Logic of preferential attachment

» m=1: G, obeys MSO 0-1 law
»m=2:7

»m >3

R.D. Kleinberg, J.M. Kleinberg, 2005:

G, does not obey FO 0-1 law.

34 /34



Logic of preferential attachment

» m=1: G, obeys MSO 0-1 law
»m=2:7

»m >3

R.D. Kleinberg, J.M. Kleinberg, 2005:

G, does not obey FO 0-1 law.
Convergence?
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