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Examples

A graph is...

triangle-free

¬
[
∃x1∃x2∃x3 (x1 ∼ x2) ∧ (x1 ∼ x3) ∧ (x2 ∼ x3)

]

disconnected

∃X
[
∃x∃y X (x) ∧ (¬X (y))

]
∧[

∀x∀y (X (x) ∧ [¬X (y)])⇒ (¬[x ∼ y ])

]
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Predicates

• V = {1, . . . , n}

• P : Vm → {0, 1} — a predicate of arity m
• a graph G = (V ,E ) represents the symmetric predicate:

P(x , y) = 1 (or x ∼ y) if and only if {x , y} ∈ E

• P is called unary if its arity equals 1
• a subset S ⊂ V represents the unary predicate:

P(x) = 1 if and only if x ∈ S

Variable and predicate symbols

I x , y , x1, x2, . . . are FO variables;
I X is a k-ary predicate variable symbol (or SO variable)
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First order sentences

relational symbols ∼,=;
logical connectivities ¬,⇒,⇔,∨,∧;
variables x , y , x1, ...;
quantifiers ∀,∃

∀x∃y (x = y)

∃x
(
∀y ¬(x = y)⇒ (x ∼ y)

)
∧(

∀x̃ [(∀y ¬(x = y)⇒ (x ∼ y))⇒ (x = x̃)]

)

4 / 34



First order sentences

relational symbols ∼,=;
logical connectivities ¬,⇒,⇔,∨,∧;
variables x , y , x1, ...;
quantifiers ∀,∃

∀x∃y (x = y)

∃x
(
∀y ¬(x = y)⇒ (x ∼ y)

)
∧(

∀x̃ [(∀y ¬(x = y)⇒ (x ∼ y))⇒ (x = x̃)]

)

4 / 34



First order sentences

relational symbols ∼,=;
logical connectivities ¬,⇒,⇔,∨,∧;
variables x , y , x1, ...;
quantifiers ∀,∃

∀x∃y (x = y)

∃x
(
∀y ¬(x = y)⇒ (x ∼ y)

)
∧(

∀x̃ [(∀y ¬(x = y)⇒ (x ∼ y))⇒ (x = x̃)]

)
4 / 34



Second order sentences

relational symbols ∼,=;
logical connectivities ¬,⇒,⇔,∨,∧;
FO variables x , y , x1, ...;
SO variables X ,Z ,X1, . . . with fixed arities;
quantifiers ∀,∃

∃X
[
∀x∃y∀z X (x , y) ∧ ([y 6= z ]⇒ ¬X (x , z))

]
∧[

∀x∀y (X (x , y)⇔ X (y , x))

]
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Monadic second order sentences

In monadic second order (MSO) sentences only unary
variable predicates are allowed

∀X
[

(X is a clique)∧(∀Y [Y ⊃ X ]⇒ [Y is not a clique])

]
⇒

[
∀x (¬X (x))⇒ (∃y X (y) ∧ (x ∼ y))

]

An existential monadic second order (EMSO) sentence is
a monadic sentence such that all SO variables are in the
beginning and bounded by existential quantifiers
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Expressing graph properties

A property is a set of graphs closed under isomorphism
relation

A sentence ϕ defines a property P , if

G ∈ P ⇔ G |= ϕ

I If property P is defined in FO with k variables, then it
is verified on n-vertex graph in O(nk) time.

I Fagin, 1973: P belongs to NP class if and only if P is
defined in ESO.
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Certain properties

I Defined in FO:
• to be complete
• to contain an isolated vertex
• the diameter equals 3

I Defined in MSO but not in FO:
• to be connected
• to be bipartite

I Defined in SO but not in MSO:
• to have even number of vertices
• to contain a Hamiltonian cycle

I Containing k-clique is defined in FO with k variables
but not in FO with k − 1 variables
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Probabilistic approach

Consider a logic L and a graph property P .
Question: is P defined in L?

Let

1. for every ϕ ∈ L, either, for almost all graphs on
{1, . . . , n}, ϕ is true, or, for almost all graphs on
{1, . . . , n}, ϕ is false;

2. the fraction of graphs on {1, . . . , n} that have the
property P does not converge neither to 0 nor to 1.

Then the answer is negative.
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FO zero-one law

Theorem (Glebskii, Kogan, Liogon’kii, Talanov,
1969;
Fagin, 1976)

Let ϕ be a FO sentence.
Let Xn be the number of all graphs G on {1, . . . , n} such
that G |= ϕ.
Then

either
Xn

2(n
2)
→ 0, or

Xn

2(n
2)
→ 1.

Or, in other words, G (n, 12) obeys FO 0-1 law.
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Ehrenfeucht game

• G ,H — two graphs
• two players: Spoiler and Duplicator
• k — number of rounds

In every round, Spoiler chooses a graph (either G or H)
and a vertex in this graph; Duplicator chooses a vertex in
another graph.
After the k-th round, x1, . . . , xk are chosen in G and
y1, . . . , yk are chosen in H .
Duplicator wins if and only if

f : {x1, . . . , xk} → {y1, . . . , yk} s.t. f (xi) = yi

is isomorphism of G |{x1,...,xk} and H |{y1,...,yk}.
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Ehrenfeucht theorem

Quantifier depth of a sentence is the maximum number
of nested quantifiers

Example

q.d. of

∃x
(
∀y ¬(x = y)⇒ (x ∼ y)

)
∧(

∀x̃ [(∀y ¬(x = y)⇒ (x ∼ y))⇒ (x = x̃)]

)
equals 3
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Ehrenfeucht theorem

Theorem (A. Ehrenfeucht, 1960)

Duplicator has a winning strategy in Ehrenfeucht game on
G ,H in k rounds

if and only if

for every FO sentence ϕ of q.d. k, either ϕ is true on
both G ,H, or ϕ is false on G ,H

Corollary: G (n, 12) obeys FO 0-1 law if and only if, for
every k , with asymptotical probability 1 Duplicator has a
winning strategy in Ehrenfeucht game on two independent
graphs G (n, 12) and G (m, 12) in k rounds.
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k-extension property

A graph has k-extension property if, for every pair of
disjoint sets of vertices A,B , |A|+ |B | ≤ k , there exists a
vertex outside A t B adjacent to every vertex of A and
non-adjacent to every vertex of B .

• For every n ≥ 2k22k , there exists a graph on n vertices
with k-extension property.

k = 2
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Spencer’s proof

I Almost all graphs have k-extension property

I If both G ,H have k-extension property, then
Duplicator has a winning strategy in Ehrenfeucht
game on G ,H in k + 1 rounds

G (n, 12) obeys FO 0-1 law
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MSO logic of almost all graphs

Theorem (M. Kaufmann, S. Shelah, 1985)

There exists a MSO sentence ϕ such that P(G (n, 12) |= ϕ)
does not converge.

J.-M. Le Bars, 2001

There exists an EMSO sentence ϕ such that
P(G (n, 12) |= ϕ) does not converge.

Conjecture (Le Bars, 2001): G (n, 12) obeys 0-1 law for
EMSO sentences with 2 FO variables
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Le Bars conjecture is false

Theorem (S. Popova, Zhukovskii, 2019)

There exists an EMSO sentence ϕ with 1 monadic
variable and 2 FO variables such that P(G (n, 12) |= ϕ)
does not converge.

The property

There are two disjoint cliques such that

I there are no edges between them,

I there is a common neighbor of vertices of both cliques,

I every vertex outside both cliques has neighbors in
both.
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Monadic Ehrenfeucht game

• G ,H — two graphs
• two players: Spoiler and Duplicator
• k — number of rounds

In every round, Spoiler chooses either a vertex, or a set of
vertices in this graph; Duplicator chooses a vertex, or a
set of vertices in another graph.
Duplicator chooses a vertex if and only if a vertex is
chosen by Spoiler.
x1, . . . , xs ; X1, . . . ,Xr are chosen in G ;
y1, . . . , ys ; Y1, . . . ,Yr are chosen in H .
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Monadic Ehrenfeucht theorem

Duplicator wins if and only if

1. xi ∼ xj ⇔ yi ∼ yj ,

2. xi ∈ Xj ⇔ yi ∈ Yj .

G (n, 12) obeys MSO 0-1 law if and only if, for every k ,
with asymptotical probability 1 Duplicator has a winning
strategy in MSO Ehrenfeucht game on two independent
graphs G (n, 12) and G (m, 12) in k rounds.

In the case of EMSO, Spoiler always plays in one graph
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Binomial model

G (n, p):

I {1, . . . , n} — set of vertices

I all edges appear independently with probability p

for a graph H with e edges,

P(G (n, p) = H) = pe(1− p)(n
2)−e
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Zero-one laws for dense random graphs

Generalization of Glebskii et al. and Fagin’s 0-1 law

Let ∀α > 0 min{p, 1− p}nα →∞. Then G (n, p) obeys
FO 0-1 law.

Generalization of Le Bars non-convergence result

Let ∀α > 0 min{p, 1− p}nα →∞. Then G (n, p) does
not obey EMSO convergence law.
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First order zero-one laws for sparse random graphs

S. Shelah, J. Spencer, 1988; J. Lynch, 1992

Let p = n−α.

I If α ∈ R+ \Q, then FO 0-1 law holds.

I If α ∈ Q ∩ (0, 1), then FO conv. law does not hold.

I If α = 1, then FO 0-1 law does not hold, but FO
convergence law holds.

I If 1 + 1
m+1 < α < 1 + 1

m , then FO 0-1 law holds.

I If α > 2, then FO 0-1 law holds.

I If α = 1 + 1
m , then FO 0-1 law does not hold, but FO

convergence law holds.
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Monadic zero-one laws for sparse random graphs

Let p = n−α.

I (J. Tyszkiewicz, 1993) If α ∈ (0, 1), then MSO
convergence law does not hold.

I (T.  Luczak, 2004) If α = 1, then MSO 0-1 law does
not hold, but MSO convergence law holds.

I If 1 + 1
m+1 < α < 1 + 1

m , then MSO 0-1 law holds.

I If α > 2, then MSO 0-1 law holds.

I If α = 1 + 1
m , then MSO 0-1 law does not hold, but

MSO convergence law holds.
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Existential monadic zero-one laws for sparse random
graphs

Let p = n−α.

I (Announced by J. Tyszkiewicz in 1993; proved by
Zhukovskii in 2018) If α ∈ (0, 1), then EMSO
convergence law does not hold.

I (T.  Luczak, 2004) If α = 1, then EMSO 0-1 law does
not hold, but EMSO convergence law holds.

I If 1 + 1
m+1 < α < 1 + 1

m , then EMSO 0-1 law holds.

I If α > 2, then EMSO 0-1 law holds.

I If α = 1 + 1
m , then EMSO 0-1 law does not hold, but

EMSO convergence law holds.
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Random trees

Tn chosen uniformly at random from the set of all trees
on {1, . . . , n}

Theorem (G.L. McColm, 2002)

Tn obeys MSO 0-1 law.
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The main tool

S is pendant in T , if there exists an edge in T such that
S is a component of T − e

I For every tree S , with asymptotical probability 1, Tn

contains a pendant subtree isomorphic to S

I For every k , there exists K such that

if, for every tree S on at most K vertices,
T and F contain a pendant subtree isomorphic to S ,

then Duplicator wins monadic Ehrenfeucht game on
G ,H in k rounds.
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Uniform attachment model

• m = 1 — random recursive tree (R.T. Smythe, H.M.
Mahmoud, 1995)
• For arbitrary m, considered by B. Bollobás, O. Riordan,
J. Spencer, G. Tusnády in 2000

I G0 is m-clique on {1, . . . ,m}
I Gn+1 is obtained from Gn by adding the vertex
vn = n + m + 1 and m edges from vn to Gn chosen
uniformly at random
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Logic of uniform attachment: m = 1

m = 1

For every tree S , with asymptotical probability 1, Gn

contains a pendant subtree isomorphic to S

Gn obeys MSO 0-1 law
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Logic of uniform attachment: m ≥ 2

If m ≥ 2, then Gn does not obey FO 0-1 law.

The proof for m = 2

Let Xn be the number of K4 \ e in Gn.
Let k be large enough, and g(k) =

(
k
2

)
be the maximum

possible number of K4 \ e in Gk .
P(Xn ≥ g(k)) does not converge neither to 0, nor to 1.

If m ≥ 3, consider Km+1

What about convergence?
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The convergence

Theorem (Y. Malyshkin, Zhukovskii, 2019++)

For every m, Gn obeys FO convergence law.

For an existential sentence ϕ, P(Gn+1 |= ϕ) ≥ P(Gn |= ϕ)

Gn obeys EFO convergence law
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The structure: crucial properties

A connected graph on v vertices is complex if it contains
at least v + 1 edges

Induced subgraph H @ G is called separated if all its
vertices having degrees at least 2 are not adjacent to any
vertex outside H
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The structure: crucial properties

Let K ,N be large

1. With probability at least 1− ε, all complex subgraphs
of Gn on at most K vertices belong to Gn|{1,...,N}

2. With asymptotical probability 1, for every admissible
tree T on at most K vertices, Gn has a separated
subgraph isomorphic to T such that all its vertices are
outside {1, . . . ,N}

3. For every admissible connected unicyclic graph C ,
the probability that Gn has a separated subgraph
isomorphic to C such that all its vertices are outside
{1, . . . ,N} converges
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Preferential attachment

R. Albert, A.-L. Barabási, 1999,
B. Bollobás, O. Riordan, 2000:

I G0 is m-clique on {1, . . . ,m}

I Gn+1 is obtained from Gn by adding the vertex
vn = n + m + 1 and m edges independently

I the probability that i -th edge connects vn with u is
proportional to degGn

(u) and equals

degn(u)

m(n + m − 1)
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Logic of preferential attachment

I m = 1: Gn obeys MSO 0-1 law

I m = 2: ?

I m ≥ 3
R.D. Kleinberg, J.M. Kleinberg, 2005:
Gn does not obey FO 0-1 law.
Convergence?
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