Logical laws for random graphs

Maksim Zhukovskii Moscow Institute of Physics and Technology

> IPMCCC April 18 2019

Examples

A graph is...

Examples

A graph is...

triangle-free

$$\neg \left[\exists x_1 \exists x_2 \exists x_3 \quad (x_1 \sim x_2) \land (x_1 \sim x_3) \land (x_2 \sim x_3) \right]$$

Examples

A graph is...

triangle-free

$$\neg \left[\exists x_1 \exists x_2 \exists x_3 \quad (x_1 \sim x_2) \land (x_1 \sim x_3) \land (x_2 \sim x_3) \right]$$

disconnected

$$\exists X \quad \left[\exists x \exists y \ X(x) \land (\neg X(y)) \right] \land$$
$$\left[\forall x \forall y \ (X(x) \land [\neg X(y)]) \Rightarrow (\neg [x \sim y]) \right]$$

• $V = \{1, \ldots, n\}$

- $V = \{1, ..., n\}$
- $P: V^m \to \{0,1\}$ a predicate of arity m

- $V = \{1, \ldots, n\}$
- $P: V^m \to \{0,1\}$ a predicate of arity m
- a graph G = (V, E) represents the symmetric predicate:

$$P(x,y) = 1$$
 (or $x \sim y$) if and only if $\{x,y\} \in E$

- $V = \{1, \ldots, n\}$
- $P: V^m \to \{0,1\}$ a predicate of arity m
- ullet a graph G=(V,E) represents the symmetric predicate:

$$P(x,y) = 1$$
 (or $x \sim y$) if and only if $\{x,y\} \in E$

• *P* is called unary if its arity equals 1

- $V = \{1, \ldots, n\}$
- $P: V^m \to \{0,1\}$ a predicate of arity m
- ullet a graph G=(V,E) represents the symmetric predicate:

$$P(x,y) = 1$$
 (or $x \sim y$) if and only if $\{x,y\} \in E$

- P is called unary if its arity equals 1
- a subset $S \subset V$ represents the unary predicate:

$$P(x) = 1$$
 if and only if $x \in S$

- $V = \{1, \ldots, n\}$
- $P: V^m \to \{0,1\}$ a predicate of arity m
- ullet a graph G=(V,E) represents the symmetric predicate:

$$P(x,y) = 1$$
 (or $x \sim y$) if and only if $\{x,y\} \in E$

- P is called unary if its arity equals 1
- a subset $S \subset V$ represents the unary predicate:

$$P(x) = 1$$
 if and only if $x \in S$

Variable and predicate symbols

- $\triangleright x, y, x_1, x_2, \dots$ are FO variables;
- ightharpoonup X is a k-ary predicate variable symbol (or SO variable)

First order sentences

```
relational symbols \sim, =;
logical connectivities \neg, \Rightarrow, \Leftrightarrow, \lor, \land;
variables x, y, x_1, ...;
quantifiers \forall, \exists
```

First order sentences

```
relational symbols \sim, =;
logical connectivities \neg, \Rightarrow, \Leftrightarrow, \lor, \land;
variables x, y, x_1, ...;
quantifiers \forall, \exists
```

$$\forall x \exists y \quad (x = y)$$

First order sentences

relational symbols \sim , =; logical connectivities \neg , \Rightarrow , \Leftrightarrow , \lor , \land ; variables $x, y, x_1, ...$; quantifiers \forall , \exists

$$\forall x \exists y \quad (x = y)$$

$$\exists x \quad \left(\forall y \, \neg (x = y) \Rightarrow (x \sim y) \right) \land$$
$$\left(\forall \tilde{x} \left[(\forall y \, \neg (x = y) \Rightarrow (x \sim y)) \Rightarrow (x = \tilde{x}) \right] \right)$$

Second order sentences

```
relational symbols \sim, =;
logical connectivities \neg, \Rightarrow, \Leftrightarrow, \lor, \land;
FO variables x, y, x_1, ...;
SO variables X, Z, X_1, ... with fixed arities;
quantifiers \forall, \exists
```

Second order sentences

```
relational symbols \sim, =;
logical connectivities \neg, \Rightarrow, \Leftrightarrow, \lor, \land;
FO variables x, y, x_1, ...;
SO variables X, Z, X_1, ... with fixed arities;
quantifiers \forall, \exists
```

$$\exists X \quad \left[\forall x \exists y \forall z \ X(x,y) \land ([y \neq z] \Rightarrow \neg X(x,z)) \right] \land$$
$$\left[\forall x \forall y \ (X(x,y) \Leftrightarrow X(y,x)) \right]$$

Monadic second order sentences

In monadic second order (MSO) sentences only unary variable predicates are allowed

Monadic second order sentences

In monadic second order (MSO) sentences only unary variable predicates are allowed

$$\forall X \ \left[(X \text{ is a clique}) \land (\forall Y [Y \supset X] \Rightarrow [Y \text{ is not a clique}]) \right]$$
$$\Rightarrow \left[\forall x (\neg X(x)) \Rightarrow (\exists y \ X(y) \land (x \sim y)) \right]$$

Monadic second order sentences

In monadic second order (MSO) sentences only unary variable predicates are allowed

$$\forall X \ \left[(X \text{ is a clique}) \land (\forall Y [Y \supset X] \Rightarrow [Y \text{ is not a clique}]) \right]$$
$$\Rightarrow \left[\forall x (\neg X(x)) \Rightarrow (\exists y \ X(y) \land (x \sim y)) \right]$$

An existential monadic second order (EMSO) sentence is a monadic sentence such that all SO variables are in the beginning and bounded by existential quantifiers

A property is a set of graphs closed under isomorphism relation

A property is a set of graphs closed under isomorphism relation

A sentence φ defines a property P, if

$$G \in P \Leftrightarrow G \models \varphi$$

A property is a set of graphs closed under isomorphism relation

A sentence φ defines a property P, if

$$G \in P \Leftrightarrow G \models \varphi$$

▶ If property P is defined in FO with k variables, then it is verified on n-vertex graph in $O(n^k)$ time.

A property is a set of graphs closed under isomorphism relation

A sentence φ defines a property P, if

$$G \in P \Leftrightarrow G \models \varphi$$

- ▶ If property P is defined in FO with k variables, then it is verified on n-vertex graph in $O(n^k)$ time.
- ► Fagin, 1973: *P* belongs to NP class if and only if *P* is defined in ESO.

- Defined in FO:
 - to be complete
 - to contain an isolated vertex
 - the diameter equals 3

- Defined in FO:
 - to be complete
 - to contain an isolated vertex
 - the diameter equals 3
- Defined in MSO but not in FO:
 - to be connected
 - to be bipartite

- Defined in FO:
 - to be complete
 - to contain an isolated vertex
 - the diameter equals 3
- Defined in MSO but not in FO:
 - to be connected
 - to be bipartite
- Defined in SO but not in MSO:
 - to have even number of vertices
 - to contain a Hamiltonian cycle

- Defined in FO:
 - to be complete
 - to contain an isolated vertex
 - the diameter equals 3
- Defined in MSO but not in FO:
 - to be connected
 - to be bipartite
- Defined in SO but not in MSO:
 - to have even number of vertices
 - to contain a Hamiltonian cycle
- ► Containing k-clique is defined in FO with k variables but not in FO with k-1 variables

Probabilistic approach

Consider a logic \mathcal{L} and a graph property P.

Question: is P defined in \mathcal{L} ?

Probabilistic approach

Consider a logic \mathcal{L} and a graph property P.

Question: is P defined in \mathcal{L} ?

Let

- **1.** for every $\varphi \in \mathcal{L}$, either, for almost all graphs on $\{1, \ldots, n\}$, φ is true, or, for almost all graphs on $\{1, \ldots, n\}$, φ is false;
- **2.** the fraction of graphs on $\{1, \ldots, n\}$ that have the property P does not converge neither to 0 nor to 1.

Probabilistic approach

Consider a logic \mathcal{L} and a graph property P.

Question: is P defined in \mathcal{L} ?

Let

- **1.** for every $\varphi \in \mathcal{L}$, either, for almost all graphs on $\{1, \ldots, n\}$, φ is true, or, for almost all graphs on $\{1, \ldots, n\}$, φ is false;
- **2.** the fraction of graphs on $\{1, \ldots, n\}$ that have the property P does not converge neither to 0 nor to 1.

Then the answer is negative.

FO zero-one law

Theorem (Glebskii, Kogan, Liogon'kii, Talanov, 1969;

Fagin, 1976)

Let φ be a FO sentence.

Let X_n be the number of all graphs G on $\{1, ..., n\}$ such that $G \models \varphi$.

Then

either
$$\frac{X_n}{2\binom{n}{2}} \to 0$$
, or $\frac{X_n}{2\binom{n}{2}} \to 1$.

FO zero-one law

Theorem (Glebskii, Kogan, Liogon'kii, Talanov, 1969;

Fagin, 1976)

Let φ be a FO sentence.

Let X_n be the number of all graphs G on $\{1, \ldots, n\}$ such that $G \models \varphi$.

Then

either
$$\frac{X_n}{2\binom{n}{2}} \to 0$$
, or $\frac{X_n}{2\binom{n}{2}} \to 1$.

Or, in other words, $G(n, \frac{1}{2})$ obeys FO 0-1 law.

- G, H two graphs
- two players: Spoiler and Duplicator
- *k* number of rounds

- G, H two graphs
- two players: Spoiler and Duplicator
- k number of rounds

In every round, Spoiler chooses a graph (either G or H) and a vertex in this graph; Duplicator chooses a vertex in another graph.

- G, H two graphs
- two players: Spoiler and Duplicator
- *k* number of rounds

In every round, Spoiler chooses a graph (either G or H) and a vertex in this graph; Duplicator chooses a vertex in another graph.

After the k-th round, x_1, \ldots, x_k are chosen in G and y_1, \ldots, y_k are chosen in H.

- G, H two graphs
- two players: Spoiler and Duplicator
- k number of rounds

In every round, Spoiler chooses a graph (either G or H) and a vertex in this graph; Duplicator chooses a vertex in another graph.

After the k-th round, x_1, \ldots, x_k are chosen in G and y_1, \ldots, y_k are chosen in H.

Duplicator wins if and only if

$$f: \{x_1, \ldots, x_k\} \to \{y_1, \ldots, y_k\} \text{ s.t. } f(x_i) = y_i$$

is isomorphism of $G|_{\{x_1,\ldots,x_k\}}$ and $H|_{\{y_1,\ldots,y_k\}}$.

Ehrenfeucht theorem

Quantifier depth of a sentence is the maximum number of nested quantifiers

Ehrenfeucht theorem

Quantifier depth of a sentence is the maximum number of nested quantifiers

Example

q.d. of

$$\exists x \quad \left(\forall y \, \neg (x = y) \Rightarrow (x \sim y) \right) \land$$
$$\left(\forall \tilde{x} \left[(\forall y \, \neg (x = y) \Rightarrow (x \sim y)) \Rightarrow (x = \tilde{x}) \right] \right)$$

equals 3

Ehrenfeucht theorem

Theorem (A. Ehrenfeucht, 1960)

Duplicator has a winning strategy in Ehrenfeucht game on G, H in k rounds

if and only if

for every FO sentence φ of q.d. k, either φ is true on both G, H, or φ is false on G, H

Ehrenfeucht theorem

Theorem (A. Ehrenfeucht, 1960)

Duplicator has a winning strategy in Ehrenfeucht game on G, H in k rounds

if and only if

for every FO sentence φ of q.d. k, either φ is true on both G, H, or φ is false on G, H

Corollary: $G(n, \frac{1}{2})$ obeys FO 0-1 law if and only if, for every k, with asymptotical probability 1 Duplicator has a winning strategy in Ehrenfeucht game on two independent graphs $G(n, \frac{1}{2})$ and $G(m, \frac{1}{2})$ in k rounds.

k-extension property

A graph has k-extension property if, for every pair of disjoint sets of vertices A, B, $|A| + |B| \le k$, there exists a vertex outside $A \sqcup B$ adjacent to every vertex of A and non-adjacent to every vertex of B.

k-extension property

A graph has k-extension property if, for every pair of disjoint sets of vertices A, B, $|A| + |B| \le k$, there exists a vertex outside $A \sqcup B$ adjacent to every vertex of A and non-adjacent to every vertex of B.

• For every $n \ge 2k^22^k$, there exists a graph on n vertices with k-extension property.

k-extension property

A graph has k-extension property if, for every pair of disjoint sets of vertices A, B, $|A| + |B| \le k$, there exists a vertex outside $A \sqcup B$ adjacent to every vertex of A and non-adjacent to every vertex of B.

• For every $n \ge 2k^22^k$, there exists a graph on n vertices with k-extension property.

Spencer's proof

▶ Almost all graphs have *k*-extension property

Spencer's proof

- ▶ Almost all graphs have *k*-extension property
- ▶ If both G, H have k-extension property, then Duplicator has a winning strategy in Ehrenfeucht game on G, H in k+1 rounds

Spencer's proof

- ▶ Almost all graphs have *k*-extension property
- ▶ If both G, H have k-extension property, then Duplicator has a winning strategy in Ehrenfeucht game on G, H in k + 1 rounds

 $G(n, \frac{1}{2})$ obeys FO 0-1 law

MSO logic of almost all graphs

Theorem (M. Kaufmann, S. Shelah, 1985)

There exists a MSO sentence φ such that $P(G(n, \frac{1}{2}) \models \varphi)$ does not converge.

MSO logic of almost all graphs

Theorem (M. Kaufmann, S. Shelah, 1985)

There exists a MSO sentence φ such that $P(G(n, \frac{1}{2}) \models \varphi)$ does not converge.

J.-M. Le Bars, 2001

There exists an EMSO sentence φ such that $P(G(n, \frac{1}{2}) \models \varphi)$ does not converge.

MSO logic of almost all graphs

Theorem (M. Kaufmann, S. Shelah, 1985)

There exists a MSO sentence φ such that $P(G(n, \frac{1}{2}) \models \varphi)$ does not converge.

J.-M. Le Bars, 2001

There exists an EMSO sentence φ such that $P(G(n, \frac{1}{2}) \models \varphi)$ does not converge.

Conjecture (Le Bars, 2001): $G(n, \frac{1}{2})$ obeys 0-1 law for EMSO sentences with 2 FO variables

Theorem (S. Popova, Zhukovskii, 2019)

There exists an EMSO sentence φ with 1 monadic variable and 2 FO variables such that $P(G(n, \frac{1}{2}) \models \varphi)$ does not converge.

Theorem (S. Popova, Zhukovskii, 2019)

There exists an EMSO sentence φ with 1 monadic variable and 2 FO variables such that $P(G(n, \frac{1}{2}) \models \varphi)$ does not converge.

The property

There are two disjoint cliques such that

Theorem (S. Popova, Zhukovskii, 2019)

There exists an EMSO sentence φ with 1 monadic variable and 2 FO variables such that $P(G(n, \frac{1}{2}) \models \varphi)$ does not converge.

The property

There are two disjoint cliques such that

there are no edges between them,

Theorem (S. Popova, Zhukovskii, 2019)

There exists an EMSO sentence φ with 1 monadic variable and 2 FO variables such that $P(G(n, \frac{1}{2}) \models \varphi)$ does not converge.

The property

There are two disjoint cliques such that

- there are no edges between them,
- there is a common neighbor of vertices of both cliques,

Theorem (S. Popova, Zhukovskii, 2019)

There exists an EMSO sentence φ with 1 monadic variable and 2 FO variables such that $P(G(n, \frac{1}{2}) \models \varphi)$ does not converge.

The property

There are two disjoint cliques such that

- there are no edges between them,
- ▶ there is a common neighbor of vertices of both cliques,
- every vertex outside both cliques has neighbors in both.

Monadic Ehrenfeucht game

- G, H two graphs
- two players: Spoiler and Duplicator
- *k* number of rounds

Monadic Ehrenfeucht game

- *G*, *H* two graphs
- two players: Spoiler and Duplicator
- *k* number of rounds

In every round, Spoiler chooses either a vertex, or a set of vertices in this graph; Duplicator chooses a vertex, or a set of vertices in another graph.

Duplicator chooses a vertex if and only if a vertex is chosen by Spoiler.

Monadic Ehrenfeucht game

- *G*, *H* two graphs
- two players: Spoiler and Duplicator
- k number of rounds

In every round, Spoiler chooses either a vertex, or a set of vertices in this graph; Duplicator chooses a vertex, or a set of vertices in another graph.

Duplicator chooses a vertex if and only if a vertex is chosen by Spoiler.

$$x_1, \ldots, x_s$$
; X_1, \ldots, X_r are chosen in G ; y_1, \ldots, y_s ; Y_1, \ldots, Y_r are chosen in H .

Monadic Ehrenfeucht theorem

Duplicator wins if and only if

- **1.** $x_i \sim x_j \Leftrightarrow y_i \sim y_j$,
- **2.** $x_i \in X_j \Leftrightarrow y_i \in Y_j$.

Monadic Ehrenfeucht theorem

Duplicator wins if and only if

- **1.** $x_i \sim x_j \Leftrightarrow y_i \sim y_j$,
- **2.** $x_i \in X_j \Leftrightarrow y_i \in Y_j$.

 $G(n, \frac{1}{2})$ obeys MSO 0-1 law if and only if, for every k, with asymptotical probability 1 Duplicator has a winning strategy in MSO Ehrenfeucht game on two independent graphs $G(n, \frac{1}{2})$ and $G(m, \frac{1}{2})$ in k rounds.

Monadic Ehrenfeucht theorem

Duplicator wins if and only if

- **1.** $x_i \sim x_j \Leftrightarrow y_i \sim y_j$,
- **2.** $x_i \in X_j \Leftrightarrow y_i \in Y_j$.

 $G(n, \frac{1}{2})$ obeys MSO 0-1 law if and only if, for every k, with asymptotical probability 1 Duplicator has a winning strategy in MSO Ehrenfeucht game on two independent graphs $G(n, \frac{1}{2})$ and $G(m, \frac{1}{2})$ in k rounds.

In the case of EMSO, Spoiler always plays in one graph

Binomial model

```
G(n,p):
```

- $\{1, \ldots, n\}$ set of vertices
- ▶ all edges appear independently with probability p

Binomial model

G(n,p):

- $\{1, \ldots, n\}$ set of vertices
- ▶ all edges appear independently with probability p

for a graph
$$H$$
 with e edges,

$$P(G(n, p) = H) = p^{e}(1 - p)^{\binom{n}{2} - e}$$

Zero-one laws for dense random graphs

Generalization of Glebskii et al. and Fagin's 0-1 law

Let $\forall \alpha > 0 \ \min\{p, 1-p\} n^{\alpha} \to \infty$. Then G(n, p) obeys FO 0-1 law.

Zero-one laws for dense random graphs

Generalization of Glebskii et al. and Fagin's 0-1 law

Let $\forall \alpha > 0 \ \min\{p, 1-p\}n^{\alpha} \to \infty$. Then G(n, p) obeys FO 0-1 law.

Generalization of Le Bars non-convergence result

Let $\forall \alpha > 0 \ \min\{p, 1-p\}n^{\alpha} \to \infty$. Then G(n, p) does not obey EMSO convergence law.

S. Shelah, J. Spencer, 1988; J. Lynch, 1992

S. Shelah, J. Spencer, 1988; J. Lynch, 1992

Let $p = n^{-\alpha}$.

▶ If $\alpha \in \mathbb{R}_+ \setminus \mathbb{Q}$, then FO 0-1 law holds.

S. Shelah, J. Spencer, 1988; J. Lynch, 1992

- ▶ If $\alpha \in \mathbb{R}_+ \setminus \mathbb{Q}$, then FO 0-1 law holds.
- ▶ If $\alpha \in \mathbb{Q} \cap (0,1)$, then FO conv. law does not hold.

S. Shelah, J. Spencer, 1988; J. Lynch, 1992

- ▶ If $\alpha \in \mathbb{R}_+ \setminus \mathbb{Q}$, then FO 0-1 law holds.
- ▶ If $\alpha \in \mathbb{Q} \cap (0,1)$, then FO conv. law does not hold.
- ▶ If $\alpha = 1$, then FO 0-1 law does not hold, but FO convergence law holds.

S. Shelah, J. Spencer, 1988; J. Lynch, 1992

- ▶ If $\alpha \in \mathbb{R}_+ \setminus \mathbb{Q}$, then FO 0-1 law holds.
- ▶ If $\alpha \in \mathbb{Q} \cap (0,1)$, then FO conv. law does not hold.
- ▶ If $\alpha = 1$, then FO 0-1 law does not hold, but FO convergence law holds.
- ▶ If $1 + \frac{1}{m+1} < \alpha < 1 + \frac{1}{m}$, then FO 0-1 law holds.

S. Shelah, J. Spencer, 1988; J. Lynch, 1992

- ▶ If $\alpha \in \mathbb{R}_+ \setminus \mathbb{Q}$, then FO 0-1 law holds.
- ▶ If $\alpha \in \mathbb{Q} \cap (0,1)$, then FO conv. law does not hold.
- ▶ If $\alpha = 1$, then FO 0-1 law does not hold, but FO convergence law holds.
- ▶ If $1 + \frac{1}{m+1} < \alpha < 1 + \frac{1}{m}$, then FO 0-1 law holds.
- ▶ If α > 2, then FO 0-1 law holds.

S. Shelah, J. Spencer, 1988; J. Lynch, 1992

- ▶ If $\alpha \in \mathbb{R}_+ \setminus \mathbb{Q}$, then FO 0-1 law holds.
- ▶ If $\alpha \in \mathbb{Q} \cap (0,1)$, then FO conv. law does not hold.
- ▶ If $\alpha = 1$, then FO 0-1 law does not hold, but FO convergence law holds.
- ▶ If $1 + \frac{1}{m+1} < \alpha < 1 + \frac{1}{m}$, then FO 0-1 law holds.
- ▶ If α > 2, then FO 0-1 law holds.
- If $\alpha = 1 + \frac{1}{m}$, then FO 0-1 law does not hold, but FO convergence law holds.

Monadic zero-one laws for sparse random graphs

Monadic zero-one laws for sparse random graphs

Let $p = n^{-\alpha}$.

▶ (J. Tyszkiewicz, 1993) If $\alpha \in (0,1)$, then MSO convergence law does not hold.

Monadic zero-one laws for sparse random graphs

- ▶ (J. Tyszkiewicz, 1993) If $\alpha \in (0, 1)$, then MSO convergence law does not hold.
- ▶ (T. Łuczak, 2004) If $\alpha = 1$, then MSO 0-1 law does not hold, but MSO convergence law holds.

Monadic zero-one laws for sparse random graphs

- ▶ (J. Tyszkiewicz, 1993) If $\alpha \in (0,1)$, then MSO convergence law does not hold.
- ► (T. Łuczak, 2004) If $\alpha = 1$, then MSO 0-1 law does not hold, but MSO convergence law holds.
- ▶ If $1 + \frac{1}{m+1} < \alpha < 1 + \frac{1}{m}$, then MSO 0-1 law holds.

Monadic zero-one laws for sparse random graphs

- ▶ (J. Tyszkiewicz, 1993) If $\alpha \in (0,1)$, then MSO convergence law does not hold.
- ▶ (T. Łuczak, 2004) If $\alpha = 1$, then MSO 0-1 law does not hold, but MSO convergence law holds.
- ▶ If $1 + \frac{1}{m+1} < \alpha < 1 + \frac{1}{m}$, then MSO 0-1 law holds.
- ▶ If α > 2, then MSO 0-1 law holds.

Monadic zero-one laws for sparse random graphs Let $p = n^{-\alpha}$.

- ▶ (J. Tyszkiewicz, 1993) If $\alpha \in (0,1)$, then MSO convergence law does not hold.
- ▶ (T. Łuczak, 2004) If $\alpha = 1$, then MSO 0-1 law does not hold, but MSO convergence law holds.
- ▶ If $1 + \frac{1}{m+1} < \alpha < 1 + \frac{1}{m}$, then MSO 0-1 law holds.
- ▶ If α > 2, then MSO 0-1 law holds.
- ▶ If $\alpha = 1 + \frac{1}{m}$, then MSO 0-1 law does not hold, but MSO convergence law holds.

Let $p = n^{-\alpha}$.

• (Announced by J. Tyszkiewicz in 1993; proved by Zhukovskii in 2018) If $\alpha \in (0,1)$, then EMSO convergence law does not hold.

- (Announced by J. Tyszkiewicz in 1993; proved by Zhukovskii in 2018) If $\alpha \in (0,1)$, then EMSO convergence law does not hold.
- ▶ (T. Łuczak, 2004) If $\alpha = 1$, then EMSO 0-1 law does not hold, but EMSO convergence law holds.

- (Announced by J. Tyszkiewicz in 1993; proved by Zhukovskii in 2018) If $\alpha \in (0,1)$, then EMSO convergence law does not hold.
- ▶ (T. Łuczak, 2004) If $\alpha = 1$, then EMSO 0-1 law does not hold, but EMSO convergence law holds.
- ▶ If $1 + \frac{1}{m+1} < \alpha < 1 + \frac{1}{m}$, then EMSO 0-1 law holds.

- (Announced by J. Tyszkiewicz in 1993; proved by Zhukovskii in 2018) If $\alpha \in (0,1)$, then EMSO convergence law does not hold.
- ▶ (T. Łuczak, 2004) If $\alpha = 1$, then EMSO 0-1 law does not hold, but EMSO convergence law holds.
- ▶ If $1 + \frac{1}{m+1} < \alpha < 1 + \frac{1}{m}$, then EMSO 0-1 law holds.
- ▶ If α > 2, then EMSO 0-1 law holds.

- ► (Announced by J. Tyszkiewicz in 1993; proved by Zhukovskii in 2018) If $\alpha \in (0,1)$, then EMSO convergence law does not hold.
- ▶ (T. Łuczak, 2004) If $\alpha = 1$, then EMSO 0-1 law does not hold, but EMSO convergence law holds.
- ▶ If $1 + \frac{1}{m+1} < \alpha < 1 + \frac{1}{m}$, then EMSO 0-1 law holds.
- ▶ If α > 2, then EMSO 0-1 law holds.
- ▶ If $\alpha = 1 + \frac{1}{m}$, then EMSO 0-1 law does not hold, but EMSO convergence law holds.

Random trees

 \mathcal{T}_n chosen uniformly at random from the set of all trees on $\{1,\ldots,n\}$

Theorem (G.L. McColm, 2002)

 \mathfrak{T}_n obeys MSO 0-1 law.

The main tool

S is **pendant** in T, if there exists an edge in T such that S is a component of T-e

The main tool

S is **pendant** in T, if there exists an edge in T such that S is a component of T-e

- ▶ For every tree S, with asymptotical probability 1, \mathcal{T}_n contains a pendant subtree isomorphic to S
- For every k, there exists K such that if, for every tree S on at most K vertices, T and F contain a pendant subtree isomorphic to S, then Duplicator wins monadic Ehrenfeucht game on G, H in k rounds.

Uniform attachment model

- m = 1 random recursive tree (R.T. Smythe, H.M. Mahmoud, 1995)
- For arbitrary m, considered by B. Bollobás, O. Riordan, J. Spencer, G. Tusnády in 2000

Uniform attachment model

- m = 1 random recursive tree (R.T. Smythe, H.M. Mahmoud, 1995)
- For arbitrary m, considered by B. Bollobás, O. Riordan, J. Spencer, G. Tusnády in 2000
 - \mathcal{G}_0 is *m*-clique on $\{1,\ldots,m\}$
 - \mathcal{G}_{n+1} is obtained from \mathcal{G}_n by adding the vertex $v_n = n + m + 1$ and m edges from v_n to \mathcal{G}_n chosen uniformly at random

m=1

For every tree S, with asymptotical probability 1, \mathcal{G}_n contains a pendant subtree isomorphic to S

m=1

For every tree S, with asymptotical probability 1, \mathfrak{G}_n contains a pendant subtree isomorphic to S

 \mathfrak{G}_n obeys MSO 0-1 law

If $m \ge 2$, then \mathcal{G}_n does not obey FO 0-1 law.

If $m \ge 2$, then \mathcal{G}_n does not obey FO 0-1 law.

The proof for m=2

Let X_n be the number of $K_4 \setminus e$ in \mathfrak{S}_n .

Let k be large enough, and $g(k) = \binom{k}{2}$ be the maximum possible number of $K_4 \setminus e$ in \mathfrak{G}_k .

 $P(X_n \ge g(k))$ does not converge neither to 0, nor to 1.

If $m \ge 2$, then \mathcal{G}_n does not obey FO 0-1 law.

The proof for m=2

Let X_n be the number of $K_4 \setminus e$ in \mathfrak{G}_n . Let k be large enough, and $g(k) = \binom{k}{2}$ be the maximum possible number of $K_4 \setminus e$ in \mathfrak{G}_k .

 $P(X_n \ge g(k))$ does not converge neither to 0, nor to 1.

If $m \geq 3$, consider K_{m+1}

If $m \ge 2$, then \mathcal{G}_n does not obey FO 0-1 law.

The proof for m=2

Let X_n be the number of $K_4 \setminus e$ in \mathfrak{G}_n . Let k be large enough, and $g(k) = \binom{k}{2}$ be the maximum possible number of $K_4 \setminus e$ in \mathfrak{G}_k . $P(X_n \geq g(k))$ does not converge neither to 0, nor to 1.

If
$$m \geq 3$$
, consider K_{m+1}

What about convergence?

The convergence

Theorem (Y. Malyshkin, Zhukovskii, 2019++)

For every m, \mathfrak{G}_n obeys FO convergence law.

The convergence

Theorem (Y. Malyshkin, Zhukovskii, 2019++)

For every m, \mathfrak{G}_n obeys FO convergence law.

For an existential sentence φ , $P(\mathfrak{G}_{n+1} \models \varphi) \geq P(\mathfrak{G}_n \models \varphi)$

The convergence

Theorem (Y. Malyshkin, Zhukovskii, 2019++)

For every m, \mathfrak{G}_n obeys FO convergence law.

For an existential sentence φ , $P(\mathfrak{G}_{n+1} \models \varphi) \geq P(\mathfrak{G}_n \models \varphi)$

 \mathfrak{G}_n obeys EFO convergence law

The structure: crucial properties

A connected graph on v vertices is $\mathbf{complex}$ if it contains at least v+1 edges

Induced subgraph $H \sqsubseteq G$ is called **separated** if all its vertices having degrees at least 2 are not adjacent to any vertex outside H

The structure: crucial properties

Let K, N be large

- **1.** With probability at least 1ε , all complex subgraphs of \mathcal{G}_n on at most K vertices belong to $\mathcal{G}_n|_{\{1,\dots,N\}}$
- 2. With asymptotical probability 1, for every **admissible** tree T on at most K vertices, \mathcal{G}_n has a separated subgraph isomorphic to T such that all its vertices are outside $\{1, \ldots, N\}$
- **3.** For every **admissible** connected unicyclic graph C, the probability that \mathcal{G}_n has a separated subgraph isomorphic to C such that all its vertices are outside $\{1, \ldots, N\}$ converges

Preferential attachment

R. Albert, A.-L. Barabási, 1999,

B. Bollobás, O. Riordan, 2000:

Preferential attachment

- R. Albert, A.-L. Barabási, 1999,
- B. Bollobás, O. Riordan, 2000:
 - \mathcal{G}_0 is *m*-clique on $\{1,\ldots,m\}$
 - ▶ \mathcal{G}_{n+1} is obtained from \mathcal{G}_n by adding the vertex $v_n = n + m + 1$ and m edges independently
 - ▶ the probability that *i*-th edge connects v_n with u is proportional to $\deg_{\mathbb{F}_n}(u)$ and equals

$$\frac{\deg_n(u)}{m(n+m-1)}$$

• m = 1: \mathcal{G}_n obeys MSO 0-1 law

- m = 1: \mathfrak{G}_n obeys MSO 0-1 law
- m = 2: ?

- ▶ m = 1: \mathcal{G}_n obeys MSO 0-1 law
- m = 2: ?
- ► $m \ge 3$ R.D. Kleinberg, J.M. Kleinberg, 2005: \mathcal{G}_n does not obey FO 0-1 law.

- ▶ m = 1: \mathcal{G}_n obeys MSO 0-1 law
- m = 2: ?
- m ≥ 3
 R.D. Kleinberg, J.M. Kleinberg, 2005:
 G_n does not obey FO 0-1 law.
 Convergence?