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Binomial random graph G(n,p)

Let 0 ≤ p ≤ 1 (usually p = p(n)→ 0 as n→∞).

Start with an empty graph with vertex set [n] := {1,2, . . . ,n}.

Perform
(n

2

)
Bernoulli experiments inserting edges

independently with probability p.
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Binomial random graph G(n,p)

Let 0 ≤ p ≤ 1 (usually p = p(n)→ 0 as n→∞).

Start with an empty graph with vertex set [n] := {1,2, . . . ,n}.

Perform
(n

2

)
Bernoulli experiments inserting edges

independently with probability p.

Alternatively, for 0 ≤ m ≤
(n

2

)
, assign to each graph G with

vertex set [n] and m edges a probability

P (G) = pm(1− p)(n
2)−m.
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Binomial random graph G(n,p)

Let 0 ≤ p ≤ 1 (usually p = p(n)→ 0 as n→∞).

Start with an empty graph with vertex set [n] := {1,2, . . . ,n}.

Perform
(n

2

)
Bernoulli experiments inserting edges

independently with probability p.

Model introduced by Gilbert (1959) and popularized in the
seminal papers of Erdős and Rényi (1959, 1960).
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Binomial random graph G(n,p)

Let 0 ≤ p ≤ 1 (usually p = p(n)→ 0 as n→∞).

Start with an empty graph with vertex set [n] := {1,2, . . . ,n}.

Perform
(n

2

)
Bernoulli experiments inserting edges

independently with probability p.

The results are asymptotic in nature (n→∞).

We say that a given event holds asymptotically almost surely
(a.a.s.) if the probability it holds tends to 1 as n→∞.
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Thresholds and Sharp Thresholds

One of the most striking behaviour of random graphs is the
appearance and disappearance of certain graph properties.

A function p∗ = p∗(n) is a threshold for a monotone increasing
property P in the random graph G(n,p) if

lim
n→∞

P(G(n,p) ∈ P) =

{
0 if p/p∗ → 0
1 if p/p∗ →∞.
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Thresholds and Sharp Thresholds

One of the most striking behaviour of random graphs is the
appearance and disappearance of certain graph properties.

A function p∗ = p∗(n) is a threshold for a monotone increasing
property P in the random graph G(n,p) if

lim
n→∞

P(G(n,p) ∈ P) =

{
0 if p/p∗ → 0
1 if p/p∗ →∞.

(Note that the thresholds defined above are not unique.)
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Thresholds and Sharp Thresholds

One of the most striking behaviour of random graphs is the
appearance and disappearance of certain graph properties.

A function p∗ = p∗(n) is a threshold for a monotone increasing
property P in the random graph G(n,p) if

lim
n→∞

P(G(n,p) ∈ P) =

{
0 if p/p∗ → 0
1 if p/p∗ →∞.

Alternatively, one can say that:
– if p � p∗, then a.a.s. G(n,p) 6∈ P
– if p � p∗, then a.a.s. G(n,p) ∈ P
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Thresholds and Sharp Thresholds

One of the most striking behaviour of random graphs is the
appearance and disappearance of certain graph properties.

A function p∗ = p∗(n) is a threshold for a monotone increasing
property P in the random graph G(n,p) if

lim
n→∞

P(G(n,p) ∈ P) =

{
0 if p/p∗ → 0
1 if p/p∗ →∞.

Theorem (Bollobás and Thomason, 1986)
Every non-trivial monotone graph property has a threshold in
the random graph G(n,p).
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Thresholds and Sharp Thresholds

A function p∗ = p∗(n) is a sharp threshold for a monotone
increasing property P in the random graph G(n,p) if for every
ε > 0,

lim
n→∞

P(G(n,p) ∈ P) =

{
0 if p/p∗ ≤ 1− ε
1 if p/p∗ ≥ 1 + ε.

Paweł Prałat k -regular subgraphs in a random graph



Model and Thresholds Lower Bound Upper Bound Some details

Connectivity

Theorem (Erdös and Rényi, 1959)

Let p = p(n) = log n+cn
n . Then,

lim
n→∞

P(G(n,p) is connected) =


0 if cn → −∞
e−e−c

if cn → c
1 if cn →∞.

Sharp threshold: p∗ = log n/n.

Paweł Prałat k -regular subgraphs in a random graph



Model and Thresholds Lower Bound Upper Bound Some details

Connectivity

Let p = p(n) = log n+cn
n .

C : G does not have isolated vertices.

lim
n→∞

P(G(n,p) ∈ C) =


0 if cn → −∞
e−e−c

if cn → c
1 if cn →∞.

Moreover,

P(G(n,p) is connected) = P(G(n,p) ∈ C) + o(1).

Trivial bottleneck (isolated vertices) is the only bottleneck.
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k -connectivity

G is k -connected if the removal of at most k − 1 vertices of G
does not disconnect it.

Theorem (Erdös and Rényi, 1961)

Fix k ∈ N. Let p = p(n) = log n+(k−1) log log n+cn
n . Then,

lim
n→∞

P(G(n,p) is k-connected) =


0 if cn → −∞
e−e−c/(k−1)! if cn → c
1 if cn →∞.

Trivial bottleneck (vertices of degree at most k − 1) is the only
bottleneck.
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Hamilton Cycles

Hamilton Cycles: cycle that spans all vertices.

The precise theorem given below can be credited to Komlós
and Szemerédi (1983), Bollobás (1984) and Ajtai, Komlós and
Szemerédi (1985).

Theorem

Let p = p(n) = log n+log log n+cn
n . Then,

lim
n→∞

P(G(n,p) has a Hamilton cycle) =


0 if cn → −∞
e−e−c

if cn → c
1 if cn →∞.

It was a difficult question but breakthrough came with the result
of Pósa (1976).
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Hamilton Cycles

Hamilton Cycles: cycle that spans all vertices.

The precise theorem given below can be credited to Komlós
and Szemerédi (1983), Bollobás (1984) and Ajtai, Komlós and
Szemerédi (1985).

Theorem

Let p = p(n) = log n+log log n+cn
n . Then,

lim
n→∞

P(G(n,p) has a Hamilton cycle) =


0 if cn → −∞
e−e−c

if cn → c
1 if cn →∞.

Trivial bottleneck (vertices of degree 0 or 1) is the only
bottleneck.
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k -regular subgraphs

G′ = (V ′,E ′) is a subgraph of G = (V ,E) if V ′ ⊆ V and E ′ ⊆ E .

G′ = (V ′,E ′) is k -regular if each vertex of G′ has degree k .

Question: What is the threshold for G(n,p) to have k -regular
subgraph (where k ≥ 3 is a fixed integer)?

Letzter (2013) proved that this threshold is sharp. That is, there
exists rk ∈ R such that for any ε > 0

lim
n→∞

P(G(n,p) has k -regular subgraph) =

{
0 if pn ≤ rk − ε
1 if pn ≥ rk + ε.

Question: Find (or estimate) rk .
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k -regular subgraphs and k -cores

Fix k ∈ N. The k -core of a graph G = (V ,E) is the largest set
S ⊆ V such that the minimum degree δS in the induced
subgraph G[S] is at least k .

This is unique because if δS ≥ k and δT ≥ k , then δS∪T ≥ k .

rk ≥ ck , where ck is the threshold for the appearance of a
subgraph with minimum degree at least k ; that is, a non-empty
k -core.

The k -core of a graph can be found be repeatedly deleting
vertices of degree less than k from the graph.

For k ≥ 3, a.a.s. either there is no k -core in G(n,p) or one of
linear size (Łuczak, 1991).
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k -regular subgraphs and k -cores

The precise size and first occurrence of k -cores for k ≥ 3 was
established by Pittel, Spencer, and Wormald (1996).

ck = min
x>0

x

1− e−x
∑k−2

i=0
x i

i!

.

Prałat, Verstraëte, and Wormald (2011) determined the
asymptotic value of ck up to an additive O(1/ log k) =ok (1)
term. Setting qk = log k − log(2π), we have

rk ≥ ck = k + (kqk )1/2 +

(
k
qk

)1/2

+
qk − 1

3
+ O

(
1

log k

)
= k +

√
k log k + O

(√
k

log k

)
.
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Contradicting conjectures

Question: Is the threshold for a k -regular subgraph equal to the
k -core threshold?

Bollobás, Kim, and Verstraëte (2006): “No” for k = 3 and
conjectured that it is “No” for all k ≥ 4.

On the other hand, Pretti and Weigt (2006): “Yes” for k ≥ 4
(non-rigorous analysis).
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Known upper bounds and the result

Is there any upper bound for rk (for large k )?

Bollobás, Kim, and Verstraëte (2006): rk ≤ c ≈ 4k ≈ ck + 3k .

Prałat, Verstraëte, and Wormald (2011): the (k + 2)-core of
G(n,p) (if it is non-empty) contains a k -regular spanning
subgraph (k -factor); that is, rk ≤ ck+2 ≈ ck + 2.

Chan and Molloy (2012) proved the same for the (k + 1)-core;
that is, rk ≤ ck+1 ≈ ck + 1.

Mitsche, Molloy, and Prałat (2018+) reduced this bound to
within an exponentially small distance (as a function of k ) from
ck : rk ≤ ck + exp(−k/300).
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Known upper bounds and the result

Is there any upper bound for rk (for large k )?

Bollobás, Kim, and Verstraëte (2006): rk ≤ c ≈ 4k ≈ ck + 3k .

Prałat, Verstraëte, and Wormald (2011): the (k + 2)-core of
G(n,p) (if it is non-empty) contains a k -regular spanning
subgraph (k -factor); that is, rk ≤ ck+2 ≈ ck + 2.

Chan and Molloy (2012) proved the same for the (k + 1)-core;
that is, rk ≤ ck+1 ≈ ck + 1.

Mitsche, Molloy, and Prałat (2018+) reduced this bound to
within an exponentially small distance (as a function of k ) from
ck : rk ≤ ck + exp(−k/300).

(Breakthrough: stripping the k -core down to something to
which Tutte’s theorem can be applied to.)
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New arguments

Observation: k -core cannot have a k -factor; for example, a.a.s.
it has many vertices of degree k + 1 whose neighbours all have
degree k .

New arguments required in this work are:

(i) stripping the k -core down to something to which Tutte’s
theorem can be applied to (requires a delicate variant of the
configuration model).

(ii) applying Tutte’s theorem to it (the presence of degree k
vertices brings new challenges).
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Contradiction with the result of Gao?

The number of problematic vertices is linear in n. Removing
them from the k -core will cause a linear number of vertices to
have their degrees drop below k .

If c is too close to ck , then a.a.s. what remains will have no
k -core: c has to be bounded away from ck .

The number of problematic vertices is very small: e−Θ(k)n. So
we only need c to be bounded away from ck by e−Θ(k).

The subgraph that we show to have a k -factor consists of all but
e−Θ(k)n vertices of the k -core. This is consistent with a result of
Gao (2014) who proved that any k -regular subgraph must
contain all but at most εkn vertices of the k -core where εk → 0
as k grows.
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Tutte’s theorem

Γ: graph with minimum degree at least k .
L = L(Γ): vertices v with dΓ(v) = k (low vertices of Γ).
H = H(Γ): vertices v with dΓ(v) ≥ k + 1 (high vertices of Γ).
We use ZL,ZH to denote Z ∩ L, respectively Z ∩ H.
e(S): the number of edges of Γ with both endpoints in S.
e(S,T ): the number of edges of Γ from S to T .
q(S,T ): the number of components Q of H \ (S ∪ T ) such that
k |Q| and e(Q,T ) have different parity.
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Tutte’s theorem

Γ: graph with minimum degree at least k .
L = L(Γ): vertices v with dΓ(v) = k (low vertices of Γ).
H = H(Γ): vertices v with dΓ(v) ≥ k + 1 (high vertices of Γ).
We use ZL,ZH to denote Z ∩ L, respectively Z ∩ H.
e(S): the number of edges of Γ with both endpoints in S.
e(S,T ): the number of edges of Γ from S to T .
q(S,T ): the number of components Q of H \ (S ∪ T ) such that
k |Q| and e(Q,T ) have different parity.

Tutte’s theorem: Γ has a k -factor if and only if for every pair of
disjoint sets S,T ⊆ V (Γ),

k |S| ≥ q(S,T ) + k |T | −
∑
v∈T

dΓ\S(v).

(In fact, the result was initially proved by Belck in 1950.)
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Tutte’s theorem

Γ: graph with minimum degree at least k .
L = L(Γ): vertices v with dΓ(v) = k (low vertices of Γ).
H = H(Γ): vertices v with dΓ(v) ≥ k + 1 (high vertices of Γ).
We use ZL,ZH to denote Z ∩ L, respectively Z ∩ H.
e(S): the number of edges of Γ with both endpoints in S.
e(S,T ): the number of edges of Γ from S to T .
q(S,T ): the number of components Q of H \ (S ∪ T ) such that
k |Q| and e(Q,T ) have different parity.

We used the following consequence of Tutte’s theorem:
Γ has a k -factor if for every pair of disjoint sets S,T ⊆ V (Γ),

k |S|+
∑

v∈TH

(dΓ(v)− k) ≥ q(S,T ) + e(S,T ).
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Tutte’s theorem

Γ: graph with minimum degree at least k .
L = L(Γ): vertices v with dΓ(v) = k (low vertices of Γ).
H = H(Γ): vertices v with dΓ(v) ≥ k + 1 (high vertices of Γ).
We use ZL,ZH to denote Z ∩ L, respectively Z ∩ H.
e(S): the number of edges of Γ with both endpoints in S.
e(S,T ): the number of edges of Γ from S to T .
q(S,T ): the number of components Q of H \ (S ∪ T ) such that
k |Q| and e(Q,T ) have different parity.

In fact, in all but one case we check the stronger condition:
Γ has a k -factor if for every pair of disjoint sets S,T ⊆ V (Γ),

k |S|+ |TH | ≥ q(S,T ) + e(S,T ).
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The desired subgraph of the k -core

Our goal is to find (for k sufficiently large) a subgraph K of the
k -core with the following properties:

(K1) for every vertex v ∈ K , k ≤ dK (v) ≤ 2k ;
(K2) for every vertex v ∈ K with dK (v) ≥ k + 1, we have

|{w ∈ NK (v) : dK (w) = k}| ≤ 9
10k ;

(K3) |K | ≥ n
3 ;

(K4) k |K | is even.

In fact, we were able to find an induced subgraph K of G
satisfying these properties.

It is easy to modify K to enforce the final property (K4), if
necessary, at the end.
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Typical situation

(K2) was particularly challenging to enforce.

Typical approach:
(i) keep removing vertices violating one of (K1-3);
(ii) the remaining graph is uniformly random conditional on its
degree sequence (for example, this happens when analyzing
the k -core stripping process).

In some situations:
(iii) the vertex set is initially partitioned into a fixed number of
parts, and one must condition on the number of remaining
neighbours each vertex has in each part.
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Our situation

In our situation, enforcing (K2) requires conditioning on the
number of remaining neighbours each vertex has in W , the set
of vertices of degree k . Unfortunately, W changes during the
process!

We partition the vertex set (in the remaining graph) into:
W0: the vertices that had degree k in the k -core
W1: the vertices of degree at most k that are not in W0
R: the vertices of degree greater than k .
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Our situation

In our situation, enforcing (K2) requires conditioning on the
number of remaining neighbours each vertex has in W , the set
of vertices of degree k . Unfortunately, W changes during the
process!

We partition the vertex set (in the remaining graph) into:
W0: the vertices that had degree k in the k -core
W1: the vertices of degree at most k that are not in W0
R: the vertices of degree greater than k .

Note that vertices may move from R to W1 during our
procedure, but no vertex leaves W0 unless it is deleted.
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Our situation

In our situation, enforcing (K2) requires conditioning on the
number of remaining neighbours each vertex has in W , the set
of vertices of degree k . Unfortunately, W changes during the
process!

We partition the vertex set (in the remaining graph) into:
W0: the vertices that had degree k in the k -core
W1: the vertices of degree at most k that are not in W0
R: the vertices of degree greater than k .

W1 is much smaller than W0 and so we can afford to delete
vertices if they have at least two neighbours in W1 rather than
at least 9

10k . This simpler deletion rule helps us deal with the
fact that W1 is changing throughout our stripping process.
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STRIP algorithm

We say a vertex v is deletable if in the initial k -core:
(D1) deg(v) > 2k ;
(D2) v /∈W0 (that is, deg(v) ≥ k + 1) and v has at least 1

2k
neighbours in W0;

or if in the remaining graph:
(D3) deg(v) < k ;
(D4) v ∈ R and v has at least two neighbours that are in W1; or
(D5) v ∈W1 and v has a neighbour that is either (i) in R and
deletable, or (ii) in W1.

Furthermore,
(D6) once a vertex becomes deletable it remains deletable.
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STRIP algorithm

Q: the set of deletable vertices.
β = e−k/200.

1 Begin with the k -core, and initialize Q to be all vertices v
with deg(v) > 2k or v /∈W0 and v has at least 1

2k
neighbours in W0.

2 Until Q = ∅ or until we have run βn iterations, let v be the
next vertex in Q, according to a specific fixed vertex
ordering. Let N be the set of neighbours of v .

1 Remove v from the graph (and from Q).
2 If any u ∈ N that is in R now has degree at most k , then

move u from R to W1.
3 If any vertex w /∈ Q is now deletable, place w into Q.
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Additional expansion properties

There exist constants γ, ε0 > 0, k0∈ N such that for any k ≥ k0,
a.a.s. K satisfies:

(P1) For every Y ⊆ V (K ) with |Y | ≤ 10ε0n, e(Y ) < k |Y |
6000 .

(P2) For every Y ⊆ V (K ) with |Y | ≤ 1
2V (K ),

e(Y ,V (K ) \ Y ) ≥ γk |Y |.
(P3) For every disjoint pair of sets X ,Y ⊆ V (K ) with

|X | ≥ 1
200 |Y | and |Y | ≤ ε0n, e(X ,Y ) < 1

2γk |X |.
(P4) For every disjoint pair of sets X ,Y ⊆ V (K ) with

|X |+ |Y | ≤ ε0n, e(X ,Y ) <
(
1 + 1

2000

)
|N(X ) ∩ Y |+ k

100 |X |.
(P5) For every disjoint pair of sets S,T ⊆ V (K ) with |T | < 1

10ε0n
and |S| > 9

10ε0n, e(S,T ) < 3
4k |S|.

(P6) For every disjoint pair of sets S,T ⊆ V (K ) with
|T | ≥ 1

10ε0n, we have e(S,T ) ≤ k |S|+ 3
4

√
k log k |T | and∑

v∈T d(v) > (k + 7
8

√
k log k)|T |.
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Conclusion

A.a.s. STRIP halts with Q = ∅ within βn iterations.
(17.5 pages!)

Enforcing (K4).
(half a page)

Checking (P1-6).
(3 pages + PVW + CM)

Verifying (K1–4,P1–6) implies Tutte’s condition.
(3 pages + PVW + CM)
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Thank you!
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