IPM Biennial Conference on Combinatorics and Computing, May 20-22, 2025, School of Mathematics, IPM, Tehran 40 Years in Designs: Celebrating the Life and Achievments of Professor Gholamreza B. Khosrovshahi

Number of Metric Bases up to Automorphism

Meysam Korivand

Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia

Let G be a connected graph. A subset S of vertices of G is called a *resolving set* if for every pair of vertices $g_1, g_2 \in V(G)$, there exists $s \in S$ with $d(g_1, s) \neq d(g_2, s)$. A resolving set of minimum cardinality is called a *metric basis* for G, and the cardinality of such a set is called the *metric dimension* dim(G).

Let S be a metric basis of G. In certain applications of metric dimension, such as robot navigation, S plays a crucial role, since it uniquely determines the position of each vertex in the graph. Now, suppose that specifying the position of each vertex using S is not allowed. Therefore, a new metric basis S' is required. However, finding a metric basis is a difficult task as it is proven to be NP-hard. Therefore, the process of finding S' is time-consuming. Here, we reduce this calculation by exploiting the symmetries (automorphisms) of the graph. It is demonstrated that it is not necessary to find all metric bases, as a certain number of them suffices, and the remaining metric bases can be derived from them. The following observation is of pivotal importance to the defined concept.

Observation 0.1 Let G be a connected graph with a resolving set S. Then for any $f \in Aut(G)$, f(S) is a resolving set.

Let $\mathfrak{S}(G)$ be the set of all metric bases of G. Let \approx be a relation on $\mathfrak{S}(G)$ defined by $S_1 \approx S_2$ if and only if there exists $f \in \operatorname{Aut}(G)$ such that $f(S_1) = S_2$, for any $S_1, S_2 \in \mathfrak{S}(G)$. Clearly, \approx is an equivalence relation on $\mathfrak{S}(G)$. A resolving class of a resolving set S, is $[S] = \{f(S) \mid f \in \operatorname{Aut}(G)\}$. Then, for any $S_1, S_2 \in [S], S_1 \approx S_2$; and $S_1 \not\approx S_2$ if and only if $[S_1] \neq [S_2]$. Let $\mathfrak{B}(G)$ be the maximal subset of $\mathfrak{S}(G)$ such that for any two sets S_1 and S_2 in $\mathfrak{B}(G)$, we have $[S_1] \neq [S_2]$. The set $\mathfrak{B}(G)$ contains exactly one representative of each resolving class. We say that $\mathfrak{B}(G)$ is a resolving basis of G. Indeed, $\mathfrak{B}(G)$ represents a generator for all resolving sets, which may not necessarily be the smallest possible size. By combining $\mathfrak{B}(G)$ with the automorphism group of G, it is possible to generate all resolving sets of G. In this talk, we examine some results on $\mathfrak{B}(G)$ and present a delineation of open problems and potential areas for future research.

This talk is based on joint work with Prof. Edy Tri Baskoro and Dr. Grahame Erskine.