IPM Biennial Conference on Combinatorics and Computing, May 20-22, 2025, School of Mathematics, IPM, Tehran 40 Years in Designs: Celebrating the Life and Achievement of Professor Gholamreza B. Khosrovshahi

Fair Coalitions in Graphs

Maryam Safazadeh

National University of Skills(NUS)

Let G = (V, E) be a simple graph. A dominating set of G is a subset $D \subseteq V$ such that every vertex not in D is adjacent to at least one vertex in D. The cardinality of a smallest dominating set of G, denoted by $\gamma(G)$, is the domination number of G. For $k \geq 1$, a k-fair dominating set (kFD-set) in G, is a dominating set S such that $|N(v) \cap D| = k$ for every vertex $v \in V \setminus D$. A fair dominating set in S is a S is a S that satisfy the following conditions: (a) neither S in S constitutes a fair dominating set of S, and (b) S is a S constitutes a fair dominating set of S.

A fair coalition partition of a graph G is a partition $\Upsilon = \{A_1, A_2, \dots, A_k\}$ of its vertex set such that no subset of Υ acts as a fair dominating set of G, but for every set $A_i \in \Upsilon$, there exists a set $A_j \in \Upsilon$ such that A_i and A_j combine to form a fair coalition. We define the fair coalition number of G as the maximum cardinality of a fair coalition partition of G, and we denote it by $\mathcal{C}_f(G)$. We initiate the study of the fair coalition in graphs and obtain $\mathcal{C}_f(G)$ for some specific graphs.

This is a joint work with Saeid Alikhani.

Keywords: Fair domination, Fair coalition, cycle.