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Abstract

IPV is the intuitionistic theory axiomatized by Cook’s equational theory PV
plus PIND on NP -formulas. Two extensions of IPV were introduced by Buss
and by Cook and Urquhart by adding PIND for formulas of the form A(x) ∨ B,
respectively ¬¬A(x), where A(x) is NP and x is not free in B. Cook and Urquhart
posed the question of whether these extensions are proper. We show that in each
of the two cases the extension is proper unless the polynomial hierarchy collapses.
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1 Introduction

The theory CPV is the conservative extension of Buss’s theory S1
2 obtained by adding

function symbols for polynomial time functions and adding defining equations for the
new function symbols. Equivalently, CPV is the theory axiomatized by Cook’s theory
PV plus PIND on NP -formulas. Here, an NP -formula is a formula of the form (∃x 6
t)(r = s) with the usual restrictions on the variables. The theory IPV is the intuitionistic
counterpart of CPV in the latter form.

An intuitionistic extension IPV + of IPV was defined in [B] which includes PV and
has the PIND axioms for formulas of the form A(x) ∨B, where A(x) is an NP -formula
and x is not free in B. Buss proved that this theory is sound and complete with respect
to CPV -normal (i.e. locally CPV ) Kripke structures, see [B, Th. 3 and 5].

Another extension of IPV was introduced by Cook and Urquhart which includes
PIND for formulas of the form ¬¬A(x), where A(x) is an NP -formula, besides NP -
PIND, see [CU]. Let us denote this theory IPV ∗.

Cook and Urquhart argued that IPV is a good candidate for formalizing the notion
of feasibly constructive proof for sentences expressed in first order arithmetic. On the
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other hand, they mentioned that it is difficult philosophically to argue that these two
more general induction schemes are not feasible.

They raised the question of whether these extensions are proper, see Chapter 0 of
[CU]. Below, we show that in each of the two cases if the extension is not proper, then
CPV = PV1. The theory PV1 can be considered as PV conservatively extended to first-
order classical logic and so is a ∀1-theory. This will be done by using Kripke models.
We know that if CPV = PV1, then the polynomial hierarchy collapses, by a result of
Krajicek, Pudlak, and Takeuti (see [K, Th. 10.2.4]).

We refer to [B] and [CU] for more detailed versions of the definitions of the theories
we use. We refer to [B] also for the definition of Kripke models and basic facts about
them. The definition of the negative translation and basic facts about it can be found in
[TD]. We will use this translation in the next section.

2 IPV + and IPV ∗ versus IPV

First we compare the theories IPV and IPV +. The following easy Lemma shows that
they are classically equivalent.

Lemma 2.1 The classical closure of IPV + is equivalent to CPV .

Proof This can be seen easily since one can classically decide any formula. More
precisely, assume M � CPV and consider an instance of PIND on a formula of the
form A(x) ∨ B, where A(x) is an NP -formula and B is a sentence (both possibly with
parameters from M). Now consider two cases M � B or M � ¬B. It is easy to see that
in each of the two cases M � (A(x) ∨B)− PIND. �

Theorem 2.2 If IPV ` IPV + then CPV = PV1.

Proof Assume CPV is a proper extension of PV1. Suppose M � PV1 and M 2 CPV .
We can assume without loss of generality that M is countable. There is a Σb

1-elementary
extension M∗ of M such that M∗ � CPV , see [K, Th. 7.6.3]. Consider the two-node
Kripke structure obtained by putting M∗ above M . We show that this Kripke structure
forces IPV . It forces PV since PV is ∀1-axiomatized. Also, M∗ 
 IPV + by the above
Lemma. Suppose M forces the assumptions of an instance of PIND on a formula A(x, b)
of the form (∃y 6 t)(r = s) where b ∈ M . Suppose also that M does not force ∀xA(x, b).
Hence, by definition of forcing, M 2 A(c, b) for some c ∈ M . Thus M∗ 2 A(c, b) since the
extension is Σb

1-elementary. This is a contradiction since M∗ clearly forces this formula.

Now we show that the Kripke model does not force IPV +. By M 2 CPV , there is an
NP -formula A(x), possibly with parameters from M , such that M does not satisfy the
PIND axiom for A(x). So M � A(0), M � ∀x(A(xx

2
y) → A(x)), but M 2 ∀xA(x). Hence

M∗ 2 ∀xA(x). Define C = ∃x(A(xx
2
y)∧¬A(x)). We show that M 1 (A(x)∨C)−PIND.

Claim 1 We have M 1 C but M∗ 
 C.
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Proof of Claim 1 M 1 C since M 2 C (note that M 
 A(d) if and only if M � A(d),
for any d ∈ M).

To show that M∗ 
 C, recall that M∗ 2 ∀xA(x) but M∗ � A(0) and M∗ � A(x) −
PIND. So M∗ � C. Therefore, M∗ 
 C.

Claim 2 We have M 1 (A(x) ∨ C)− PIND.

Proof of Claim 2 M 
 (A(0) ∨ C) because M 
 A(0). M 1 ∀x(A(x) ∨ C) because
M 2 ∀xA(x) and M 1 C. So, to prove the claim, it is enough to show that M 

∀x((A(xx

2
y) ∨ C) → (A(x) ∨ C)). We must show that

(i) ∀d ∈ M , M 
 ((A(xd
2
y) ∨ C) → (A(d) ∨ C)) and

(ii) ∀e ∈ M∗, M∗ 
 ((A(x e
2
y) ∨ C) → (A(e) ∨ C)).

By Claim 1, M∗ 
 C so we get (ii). To prove (i), assume M 
 ((A(xd
2
y)∨C) for some

d ∈ M . Then M � A(xd
2
y) because M 1 C. Thus by M � ∀x(A(xx

2
y) → A(x)), we get

M � A(d). Hence, M 
 A(d) ∨ C. �

Now we compare the theories IPV and IPV ∗. First we express two useful results.

Proposition 2.3 The theory IPV ∗ is closed under the negative translation.

Proof To see this note that atomic formulas are decidable in IPV and so clearly the
negative translation of each axiom of PV is equivalent to the same axiom. Moreover, the
negative translation of each NP -formula A, in IPV is equivalent to ¬¬A. �

Corollary 2.4 The union of the worlds in any linear Kripke model of IPV ∗ satisfies
CPV .

Proof Let K be a linear Kripke model of IPV ∗. By induction on the complexity of
formulas it is easy to see that for each ∃-free formula A, K forces A if and only if some
node in K forces A if and only if the union of the worlds in K satisfies A. Now to prove the
corollary it is enough to note that the negative translation of each formula is classically
equivalent to the same formula and is ∃-free. �

We next establish the second main result of this paper, concerning the relation between
IPV and IPV ∗.

Theorem 2.5 If IPV ` IPV ∗ then CPV = PV1.

Proof Suppose IPV = IPV ∗. Thus each chain of models of CPV produces a lin-
ear Kripke model of IPV ∗ because IPV is sound with respect to CPV -normal Kripke
structures. Therefore, by the above corollary, the union of the worlds in the chain must
satisfy CPV . Thus, using the well-known model theoretic characterization of ∀2-theories
(see [CK, Th. 3.2.3]), we obtain that CPV must be ∀2-axiomatizable. Thus it must be
equivalent to PV1 because CPV is ∀2-conservative over PV1, see [K, Coro. 7.2.4 and
7.2.6]. This implies that CPV = PV1. �
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