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A speial ase

Main de�nition

Let r, s, n ∈ N, s < r < n, and let G(n, r, s) = (V,E), where

V = {x = (x1, . . . , xn) : xi ∈ {0, 1}, x1 + . . .+ xn = r},

E = {{x,y} : (x,y) = s}.
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diameter.

G(n, r, 0) is the lassial Kneser graph; G(n, 1, 0) is just a omplete graph.

Construtive bounds for Ramsey numbers.
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Random subgraphs of G(n, r, s): independene

numbers

Theorem (Frankl, F�uredi, 1985)

Let r, s be �xed as n → ∞.

If r 6 2s+ 1, then α(G(n, r, s)) = Θ (ns).
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Let r > 2, s = 0. Then G(n, r, s) is Kneser's graph.

Bollob�as, Narayanan, A.M., 2016

Fix a real number ε > 0 and let r = r(n) be a natural number suh that

2 6 r(n) = o(n1/3). Let pc(n, r) = ((r + 1) logn− r log r)/
(

n−1

r−1

)

. As n → ∞,

P

(

α(Gp(n, r, 0)) = α(G(n, r, 0)) =

(

n− 1

r − 1

))

→

{

1 if p > (1 + ε)pc(n, r)

0 if p 6 (1− ε)pc(n, r).
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Theorem

(Pyaderkin, 2016) W.h.p. α(G1/2(n, 3, 1)) ∼ 2α(G(n, 3, 1)) log
2
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(Kiselev, Derevyanko, 2017) W.h.p. α(G1/2(n, 2, 1)) ∼ α(G(n, 2, 1)) log
2
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Let us skip rather umbersome ases of arbitrary r, s and onentrate on Kneser's

graphs (r > 1, s = 0).
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Lov�asz, 1978: if r 6 n/2, then χ(G(n, r, 0)) = n− 2r + 2.

Very simply the hromati number of G(n, r, 0) is not so stable as the

independene number: w.h.p. even χ(G1/2(n, r, 0)) < n− 2r + 2. However

Theorem (Kupavskii, 2016)

For many di�erent n, r, p, w.h.p. χ(Gp(n, r, 0)) ∼ n− 2r + 2.

For example, if g(n) is any growing funtion and r is arbitrary in the range

between 2 and

n
2
− g(n), then for any �xed p, χ(Gp(n, r, 0)) ∼ n− 2r + 2.

Many improvements by Kupavskii and by Alishahi and Hajiabolhassan.
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Random subgraphs of G(n, r, s): hromati

numbers

Theorem (Kiselev, Kupavskii, 2019+)

If r > 3, then w.h.p.

n− c1
2r−2

√

log
2
n 6 χ(G1/2(n, r, 0)) 6 n− c2

2r−2

√

log
2
n.
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If r > 3, then w.h.p.

n− c1
2r−2

√

log
2
n 6 χ(G1/2(n, r, 0)) 6 n− c2

2r−2

√

log
2
n.

If r = 2, then w.h.p.

n− c1
2

√

log
2
n · log

2
log

2
n 6 χ(G1/2(n, r, 0)) 6 n− c2

2r−2

√

log
2
n · log

2
log

2
n.
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A general result
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A general result

Theorem (A.M., 2017)

Let Gn = (Vn, En), n ∈ N, be a sequene of graphs. Let Nn = |Vn|, αn = α(Gn).
Let γn be the maximum number of verties of Gn that are non-adjaent to both

verties of a given edge. Assume that the quantities Nn, αn, γn are monotone

inreasing to in�nity and there exists a funtion βn suh that

1 βn > γn and βn = o(αn);

2 log
2
Nn = o

(

αn

βn

)

;

3 log
2
Nn = o (βn − γn).

Then w.h.p. α(Gn, 1/2) ∼ α(Gn).
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