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Abstract. In this note, we continue to study zero-divisor properties of skew

inverse Laurent series rings R((x−1;σ, δ)), where R is an associative ring
equipped with an automorphism σ and a σ-derivation δ. We first introduce

(σ, δ)-SILS Armendariz rings, a generalization of the standard Armendariz

condition from ordinary polynomial ring R[x] to skew inverse Laurent series
ring R((x−1;σ, δ)). We study the ring-theoretical properties of (σ, δ)-SILS Ar-

mendariz rings and using the properties of these rings, we characterize radicals

of the skew inverse Laurent series ring R((x−1;σ, δ)), in terms of a (σ, δ)-SILS
Armendariz ring R. Also, we prove that several properties transfer between

R and R((x−1;σ, δ)), in case R is an σ-compatible (σ, δ)-SILS Armendariz ring.
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1. Introduction

Throughout this paper, R denotes an associative ring with identity, σ an auto-
morphism of R and δ a σ-derivation of a ring R (i.e., δ is an additive operator on R
with the property that δ(ab) = δ(a)b+ σ(a)δ(b). Then we denote by R((x−1;σ, δ))
the skew inverse Laurent series ring over the coefficient ring R formed by formal
series f(x) =

∑m
i=−∞ aix

i, where x is a variable, m is an integer (maybe nega-
tive), and the coefficients ai of the series f are elements of the ring R. In the
ring R((x−1;σ, δ)), addition is defined as usual and multiplication is defined with
respect to the relations

xa = σ(a)x+ δ(a), x−1a =

∞∑
i=0

σ−1(−δσ−1)i−1(a)x−i.

Skew inverse Laurent series rings have wide applications. Not only do they provide
interesting examples in non-commutative algebra, they have also been a valuable
tool used first by Hilbert in the study of the independence of geometry axioms.
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1



2 A. ALHEVAZ1 AND D. KIANI1,2

The ring-theoretical properties of skew inverse Laurent series rings have been in-
vestigated by many authors (see [18], [31] and [37-39], for instance). Some of these
have worked either with the case δ = 0 or the case where σ is the identity. With
the impetus of quantized derivations, renewed interest in the general skew inverse
Laurent series ring R((x−1;σ, δ)) has arisen during the last few years. For the con-
tinuation of ring-theoretical properties of skew inverse Laurent series rings, in this
paper, we study the relationship between zero-divisor properties of a ring R and
the general skew inverse Laurent series ring R((x−1;σ, δ)).

A ring R is said to be Armendariz if the product of two polynomials in R[x] is
zero if and only if the product of their coefficients is zero. This definition was coined
by Rege and Chhawchharia [36] in recognition of Armendariz’s proof in [6, Lemma
1] that reduced rings (i.e., rings without non-zero nilpotent elements) satisfy this
condition. The more comprehensive study of Armendariz rings was carried out
recently. As observed by Hirano in [25], the Armendariz condition hides a remark-
able connection between the set of annihilators of R and those of R[x]. Namely,
the Armendariz rings are precisely those rings R for which there is a bijective cor-
respondence between the right annihilators of R and the right annihilators of R[x].
Several papers are devoted to studying the Armendariz property of rings (see the
references for some literature on the subject). Following [23], an endomorphism σ
of a ring R is called compatible if for all a, b ∈ R, ab = 0⇔ aσ(b) = 0. A ring R is
called σ-compatible, if there exist a compatible endomorphism σ of R. Also by [28],
an endomorphism σ of a ring R is called rigid if for every a ∈ R, aσ(a) = 0⇔ a = 0.

In this paper, first we apply the concept of Armendariz ring to skew inverse Lau-
rent series ring over general non-commutative ring. We say R is an (σ, δ)-SILS Ar-
mendariz ring, if for each elements f(x) =

∑m
i=−∞ aix

i and g(x) =
∑n

j=−∞ bjx
j ∈

R((x−1;σ, δ)), f(x)g(x) = 0 implies that aix
ibjx

j = 0, for each i ≤ m and j ≤ n.
Although reduced rings are (σ, δ)-SILS Armendariz for any compatible automor-
phism σ of R, but we will provide a fairly rich classes of non-reduced (σ, δ)-SILS
Armendariz rings. An equivalent characterization of an (σ, δ)-SILS Armendariz ring
is given, which is useful to simplify the proofs. Then, we are concerned with the
characterization of the radicals of skew inverse Laurent series ring R((x−1;σ, δ)), in
terms of a (σ, δ)-SILS Armendariz ring R. When R is an σ-compatible (σ, δ)-SILS
Armendariz ring, then the sum of all nilpotent ideals of R coincides with the sum
of all nil left ideals of R. In spite of the many great advances made in ring theory
in recent times, Köthe’s Conjecture, which posits that a ring with no non-zero nil
ideals has no non-zero nil one-sided ideals, has remained unsolved in general. For
several special classes of rings, the conjecture has been shown to be true. We will
presently add σ-compatible (σ, δ)-SILS Armendariz rings to this list. There is con-
siderable interest in studying if and how certain properties of rings are preserved
under skew inverse Laurent series extensions: if a ring R has some property, one
would like to know whether the ring R((x−1;σ, δ)) also enjoys that property. We
prove that several properties transfer between R and R((x−1;σ, δ)), in case R is an
σ-compatible (σ, δ)-SILS Armendariz ring.



RADICALS OF SKEW INVERSE LAURENT SERIES RINGS 3

2. Armendariz Property of Skew Inverse Laurent Series Rings

There are many ways to generalize Armendariz’s result. Our goal in this section
is to see to what extent we can generalize the results obtained about the standard
Armendariz condition from polynomial ring R[x] to the full generality of the skew
inverse Laurent series ring R((x−1;σ, δ)). Because of the complexity of the coeffi-
cients that arise upon multiplication in R((x−1;σ, δ)), this generalization is fraught
with difficulties.

We apply the concept of Armendariz ring to skew inverse Laurent series ring
over general non-commutative ring. We study ring-theoretical properties of (skew-
formal) inverse Laurent series rings, which turn out to be particularly well be-
haved analogues of commutative Laurent series rings. These rings provide non-
commutative generalizations of commutative Laurent series rings.

We begin by giving a series of definitions with the aim of producting general-
izations of (linearly) Armendariz condition in the context of skew inverse Laurent
series rings.

Definition 2.1. (i) Let σ be an automorphism and δ a σ-derivation of a ring R.
The ring R is called a (σ, δ)-skew Armendariz ring of skew inverse Laurent series
type (briefly, (σ, δ)-SILS Armendariz ring), if for each elements f(x) =

∑m
i=−∞ aix

i

and g(x) =
∑n

j=−∞ bjx
j ∈ R((x−1;σ, δ)), f(x)g(x) = 0 implies aix

ibjx
j = 0, for

each i ≤ m and j ≤ n.
(ii) Let σ be an automorphism and δ a σ-derivation of a ring R. The ring

R is called a linearly (σ, δ)-SILS Armendariz ring, if for each elements f(x) =
a−1x

−1 + a0 and g(x) = b−1x
−1 + b0 ∈ R((x−1;σ, δ)), f(x)g(x) = 0 implies

aix
ibjx

j = 0, for i, j ∈ {−1, 0}.

The following example shows that there exists an Armendariz ring with an au-
tomorphism σ and an σ-derivation δ which is not (linearly) (σ, δ)-SILS Armendariz.

Example 2.2. Let S be any non-zero reduced ring. Suppose R = S ⊕ S with the
usual addition and multiplication. Then R is redued and so is Armendariz. Let
σ : R → R be an automorphism defined by σ((a, b)) = (b, a) and δ : R → R be an
σ-derivation defined by δ((a, b)) = (a − b, 0). It is easy to see that σ2 = idR and
δ2 = δ. Let f(x) = (0, 1)x−1 − (0, 1), g(x) = (0, 1)x−1 + (1, 0) ∈ R((x−1;σ, δ)). It
is not hard to see that (0, 1)x−1(0, 1)x−1 = (0, 0) and (0, 1)x−1(1, 0) = (0, 1)x−1.
Then we can see that f(x)g(x) = 0, but since (0, 1)x−1(1, 0) = (0, 1)x−1, the ring
R is not (linearly) (σ, δ)-SILS Armendariz.

It will be useful to establish a criteria for transfer of the (σ, δ)-SILS Armendariz
condition from one ring to another.

Proposition 2.3. Let σ be an automorphism and δ a σ-derivation of a ring R. Let
S be a ring and γ : R→ S a ring isomorphism. Then R is (σ, δ)-SILS Armendariz
if and only if S is (γσγ−1, γδγ−1)-SILS Armendariz.
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Proof. Let σ′ = γσγ−1 and δ′ = γδγ−1. Clearly, σ′ is an automorphism of S. Also
δ′(ab) = γδ(γ−1(a)γ−1(b)) = γ[(δγ−1)(a)γ−1(b) + (σγ−1)(a)(δγ−1(b))] = δ′(a)b +
σ′(a)δ′(b). Thus δ′ is a σ′-derivation on S. Suppose that a′ = γ(a) and b′ = γ(b),
for each a, b ∈ R. Note that γ(aσkδt(b)) = a′γ(σkδt(b)) = a′γ(σkγ−1γδtγ−1γ(b)) =
a′(γσγ−1)k(γδγ−1)t(b′) = a′σ′kδ′t(b′). Also f(x)g(x) = 0 in R((x−1;σ, δ)) if and
only if f ′(x)g′(x) = 0 in S((x−1;σ′, δ′)). On the other hand, aix

ibjx
j = 0, for each

i, j if and only if a′ix
ib′jx

j = 0, for each i, j. Thus R is (σ, δ)-SILS Armendariz if

and only if S is (γσγ−1, γδγ−1)-SILS Armendariz.

We recall the definition of a compatible endomorphism from [23]. An endomor-
phism σ of a ring R is called compatible if for all a, b ∈ R, ab = 0 ⇔ aσ(b) = 0.
A ring R is called σ-compatible, if there exist a compatible endomorphism σ of
R. Moreover, for a σ-derivation δ of R, the ring is said to be δ-compatible if
for each a, b ∈ R, ab = 0 ⇒ aδ(b) = 0. A ring R is (σ, δ)-compatible if it is
both σ-compatible and δ-compatible. We will also want to consider a condition
on endomorphism stronger than compatibility, namely the rigidity condition stud-
ied in [28]. An endomorphism σ of a ring R is called rigid if for every a ∈ R,
aσ(a) = 0 ⇔ a = 0. Basic properties of rigid and compatible endomorphisms,
proved by Hashemi and Moussavi in [23], are summarized here:

Lemma 2.4. Let σ be an endomorphism of a ring R. Then:
(i) if σ is compatible, then σ is injective;
(ii) σ is compatible if and only if for all a, b ∈ R, σ(a)b = 0⇔ ab = 0;
(iii) the following conditions are equivalent;

(1) σ is rigid;
(2) σ is compatible and R is reduced;
(3) for every a ∈ R, σ(a)a = 0 implies that a = 0.

Before we record our first main result about the (σ, δ)-SILS Armendariz rings,
let us note a couple of observations concerning the notion of a δ-compatible ring.
These facts will be used freely without mention in what follows.

Lemma 2.5. Let σ be an automorphism and δ a σ-derivation of a ring R. Then:
(1) Each σ-compatible (σ, δ)-SILS Armendariz ring is δ-compatible.
(2) Each reduced ring is δ-compatible.

Proof. (1) Let R be a σ-compatible (σ, δ)-SILS Armendariz ring and a, b ∈ R such
that ab = 0. Then we have σk1(a1)σk2(a2) = 0 for each integers k1 and k2, since σ
is a compatible automorphism. On the other hand, from ab = 0 we have δ(ab) =
δ(a)b+ σ(a)δ(b) = 0. Take f(x) = δ(a) + σ(a)x and g(x) = b+ bx ∈ R((x−1;σ, δ)).
Then f(x)g(x) = 0 and hence δ(a)b = 0, since R is (σ, δ)-SILS Armendariz. So
from δ(ab) = δ(a)b+ σ(a)δ(b) = 0, we have σ(a)δ(b) = 0. Since σ is compatible we
have aδ(b) = 0, as desired.

(2) Let R be a reduced ring and a, b ∈ R such that ab = 0. Then δ(ab) =
δ(a)b + aδ(b) = 0. Multiplying a from right-hand side of the above, we have
δ(a)ba + aδ(b)a = 0 and hence aδ(b)a = 0, since ba = 0. So aδ(b)aδ(b) = 0 and
hence aδ(b) = 0, since R is reduced.
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We shall now derive the condition for a ring R to be (σ, δ)-SILS Armendariz.
We prove that, (σ, δ)-SILS Armendariz rings is a fairly big class which includes for
instance σ-rigid rings.

Theorem 2.6. For each automorphism σ of R and any σ-derivation δ, every σ-
rigid ring is (σ, δ)-SILS Armendariz.

Proof. Let R be a σ-rigid ring. Then σ is a compatible automorphism of R, by
Lemma 2.4. First notice that by a similar way as used in [23, Lemma 3.2], we can
prove that if ab = 0, then aσk(b) = σk(a)b = 0 and also σk(a)δl(b) = δl(a)σk(b) = 0
for each integer k and every positive integer l. Also, if σk(a)b = 0 for some in-
teger k, then ab = 0. Now, let f(x)g(x) = 0, where f(x) =

∑m
i=−∞ aix

i and

g(x) =
∑n

j=−∞ bjx
j ∈ R((x−1;σ, δ)). We show that aibj = 0, for each i and j.

We work by induction on k = i + j. If k = m + n, then i = m and j = n. We
know amσ

m(bn) = 0 by looking at the degree m + n term in f(x)g(x) = 0. Thus
ambn = 0, since σ is compatible. Assume that for i + j > k, aibj = 0. From the

degree k coefficient in f(x)g(x) = 0 we obtain
∑k

t=0 atσ
t(bk−t) + ωk = 0, where

ωk is a sum of some terms of the forms aiδ
t(bj), aiδα(bj) and aiαδ(bj) such that

i + j > k. Since for each i + j > k we assume that aibj = 0, so by Lemma 2.5(2),

we have ωk = 0. Hence
∑k

t=0 atσ
t(bk−t) = 0. By multiplying bk from the left-hand

side, we obtain bka0bk = 0 and hence a0bk = 0, since R is σ-rigid and also for each

i + j > k we assume that aibj = 0. Now we have
∑k

t=1 atσ
t(bk−t) = 0. Similar

above, by multiplying bk−1 from the left-hand side, we obtain bk−1a1σ(bk−1) = 0
and hence a1bk−1 = 0, since R is σ-rigid and also for each i+ j > k we assume that
aibj = 0. Continuing in this process, we get aibj = 0 for each i, j with i+ j = k, as
desired.

Corollary 2.7. Every reduced ring with any derivation δ is δ-SILS Armendariz.

The next example shows that without compatibility condition, Theorem 2.6 is
not true in general.

Example 2.8. Keeping all of the notations from the Example 2.2, the ring
R = S ⊕ S is reduced. We have (1, 0)(0, 1) = 0, but (1, 0)σ((0, 1)) = (1, 0) and
(1, 0)δ((0, 1)) = (−1, 0). Thus R is neither σ-compatible nor δ-compatible. Also by
Example 2.2, R is not (linearly) (σ, δ)-SILS Armendariz.

A ring R is semi-commutative if the right annihilator of each element of R is
an ideal (equivalently, if for all a, b ∈ R we have ab = 0 ⇒ aRb = 0). A ring R
is symmetric if for all a, b, c ∈ R we have abc = 0 ⇒ bac = 0. A ring R is called
reversible if for all a, b ∈ R we have ab = 0⇒ ba = 0. Recall that a ring R is Abelian
if every idempotent of R is central. Note that every reduced ring is symmetric, every
symmetric ring is reversible, every reversible ring is semi-commutative and every
semi-commutative ring is Abelian.

In the following proposition, we determine the idempotents of R((x−1;σ, δ)) in
terms of the idempotents of R. Also, we show that each (σ, δ)-SILS Armendariz
ring is Abelian.
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Proposition 2.9. Let R be an (σ, δ)-SILS Armendariz ring. Then we have the
following statements:

(i) σ(e) = e and δ(e) = 0, for each e2 = e ∈ R.
(i) If e2 = e ∈ R((x−1;σ, δ)), then e ∈ R.
(iii) R is an Abelian ring.
(iv) R((x−1;σ, δ)) is an Abelian ring.

Proof. (i) Let e2 = e ∈ R. Then we have δ(e) = δ(e2) = δ(e)e + σ(e)δ(e). Now
suppose that f(x) = δ(e)+σ(e)x and g(x) = (e−1)+(e−1)x ∈ R((x−1;σ, δ)). Then
we have f(x)g(x) = 0. Since R is an (σ, δ)-SILS Armendariz ring, δ(e)e = δ(e) and
hence σ(e)δ(e) = 0. On the other hand, if we take p(x) = δ(e) − (1 − σ(e))x and
q(x) = e+ ex ∈ R((x−1;σ, δ)), then we have p(x)q(x) = 0. Thus δ(e) = δ(e)e = 0,
since R is an (σ, δ)-SILS Armendariz ring. Now take t(x) = (1−e)+(1−e)σ(e)x and
u(x) = e+(e−1)σ(e)x ∈ R((x−1;σ, δ)). Then t(x)u(x) = 0 and hence σ(e) = eσ(e),
since R is an (σ, δ)-SILS Armendariz ring. On the other hand, v(x)w(x) = 0, where
v(x) = e+e(1−σ(e))x and w(x) = (1−e)−e(1−σ(e))x ∈ R((x−1;σ, δ)). Now since
R is (σ, δ)-SILS Armendariz, we have e = eσ(e). Therefore e = σ(e), as desired.

(ii) Let e =
∑m

i=−∞ eix
i be an idempotent of R((x−1;σ, δ)). Since (1− e)e = 0,

we have (1 − e0)ei = 0, for each i. Thus ei = e0ei, for each i. On the other hand,
since e(1−e) = 0, we have e0(1−e0) = 0 and e0ei = 0, for each i 6= 0. Thus ei = 0,
for each i 6= 0. Hence e = e0 ∈ R, as desired.

(iii) Let R be (σ, δ)-SILS Armendariz ring, e2 = e ∈ R and r ∈ R. Suppose that
f(x) = e − er(1 − e)x and g(x) = (1 − e) + er(1 − e)x ∈ R((x−1;σ, δ)). Then we
have f(x)g(x) = 0 and hence er(1− e) = 0, since R is (σ, δ)-SILS Armendariz ring.
So er = ere. On the other hand, h(x)k(x) = 0, where h(x) = (1− e)− (1− e)rex
and k(x) = e + (1 − e)rex ∈ R((x−1;σ, δ)). Since R is an (σ, δ)-SILS Armendariz
ring, it implies that (1− e)(1− e)re = 0. Therefore re = ere and so re = er which
implies that R is Abelian.

(iv) It follows by (i), (ii) and (iii).

Theorem 2.10. Let R be a ring, σ a compatible automorphism and δ an σ-
derivation of R. Then the following statements are equivalent:

(1) R is (σ, δ)-SILS Armendariz ring.
(2) For each f(x) =

∑m
i=−∞ aix

i and g(x) =
∑n

j=−∞ bjx
j ∈ R((x−1;σ, δ)),

f(x)g(x) = 0 implies a0bj = 0, for each j ≤ n.
(3) For each f(x) =

∑m
i=−∞ aix

i and g(x) =
∑n

j=−∞ bjx
j ∈ R((x−1;σ, δ)),

f(x)g(x) = 0 implies aibj = 0, for each i ≤ m and j ≤ n.

Proof. (1) ⇒ (2) and (3) ⇒ (1) are clear, and we only prove the (2) ⇒ (3). Let
f(x) =

∑m
i=−∞ aix

i and g(x) =
∑n

j=−∞ bjx
j ∈ R((x−1;σ, δ)) and f(x)g(x) = 0.

First, we show that a1bj = 0, for all j ≤ n. Note that since f(x)g(x) = 0, we have(
m∑

i=−∞
aix

i−1

)
x

 n∑
j=−∞

bjx
j

 =

(
m∑

i=−∞
aix

i−1

) n+1∑
j=−∞

(σ(bj−1) + δ(bj))x
j

 = 0.

So, from (2) we have a1σ(bn) = 0 and since σ is compatible, we have a1bn = 0. So
0 = δ(a1bn) = δ(a1)bn+σ(a1)δ(bn). Now let p(x) = δ(a1)+σ(a1)x and q(x) = bn+
bnx. Then p(x)q(x) = δ(a1)bn+σ(a1)δ(bn)+[δ(a1)bn+σ(a1)σ(bn)+σ(a1)δ(bn)]x+
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[σ(a1)σ(bn)]x2 = 0. Hence δ(a1)bn = 0 by (2) and hence σ(a1)δ(bn) = 0. Since R is
σ-compatible, we have a1δ(bn) = 0. On the other hand, since a1(σ(bn−1)+δ(bn)) =
0, we have a1σ(bn−1) = 0 and then a1bn−1 = 0, since σ is compatible. Continuing
in this process, a1bj = 0 for all j ≤ n. Similarly, we can prove that aibj = 0, for
each i ≥ 0 and j ≤ n.

Next, we show that aibj = 0, for each i ≤ 0 and j ≤ n. Note that 0 = f(x)g(x) =
(
∑m

i=−∞ aix
i+1)x−1(

∑n
j=−∞ bjx

j) = (
∑m

i=−∞ aix
i+1)(

∑n
j=−∞ cjx

j−1), where cj =∑n−j
k=0 σ

j+k−n−1(bn−k)(−δ)n−j−k(bn−k). So, by (2) we have a−1σ
−1(bn) = 0 and

hence a−1bn = 0, since σ is a compatible automorphism. By a similar way as used
in the above, we can show that a−1bj = 0, for each j ≤ n. Similarly, we can prove
that aibj = 0, for each i ≤ 0 and j ≤ n, as desired.

Theorem 2.11. Let R be an σ-compatible (σ, δ)-SILS Armendariz ring. If a, b ∈ R
and cn = 0 for some positive integer n, then ab = 0 implies acb = 0.

Proof. First we prove that if ab = cn = 0 for some positive integer n, then
acn−1b = 0, for some a, b, c ∈ R. The case n = 1 is clear. Now assume that n ≥ 2
and take f(x) = a− acn−1x and g(x) = b+ cn−1δ(b) + cn−1σ(b)x ∈ R((x−1;σ, δ)).
Then we have f(x)g(x) = ab+ acn−1δ(b) + acn−1σ(b)x− acn−1δ(b)− acn−1σ(b)x−
acn−1σ(cn−1δ(b))x−acn−1δ(cn−1δ(b))−acn−1δ(cn−1σ(b))x−acn−1σ(cn−1σ(b))x2 =
−acn−1δ(cn−1δ(b))−acn−1σ(cn−1δ(b))x−acn−1δ(cn−1σ(b))x−acn−1σ(cn−1σ(b))x2.
SinceR is σ-compatible (σ, δ)-SILS Armendariz, cn = 0, n ≥ 2, and acn−1cn−1σ(b) =
0 = acn−1cn−1δ(b), then acn−1σ(cn−1σ(b)) = acn−1σ(cn−1δ(b)) = 0, by compati-
bility of σ, and also acn−1δ(cn−1σ(b)) = acn−1δ(cn−1δ(b)) = 0, by Lemma 2.5(1).
Hence we have f(x)g(x) = 0. So acn−1σ(b) = 0, by Theorem 2.10, and then
acn−1b = 0, since R is σ-compatible. Now, without loss of generality, we can as-
sume that n = 2k and ab = cn = 0, because if n 6= 2k, then there exists a positive

integer k such that 2k > n and hence 0 = cn = cnc2
k−n = c2

k

. By above argu-

ment, since ab = (c2
k−1

)2 = 0, we have ac2
k−1

b = 0. Take f2k−2(x) = a − ac2k−2

x

and g2k−2(x) = b + c2
k−2

δ(b) + c2
k−2

σ(b)x. Then we have f2k−2(x)g2k−2(x) =

ab + ac2
k−2

δ(b) + ac2
k−2

σ(b)x − ac2
k−2

δ(b) − ac2
k−2

σ(b)x − ac2
k−2

δ(c2
k−2

δ(b)) −
ac2

k−2

σ(c2
k−2

δ(b))x − ac2
k−2

δ(c2
k−2

σ(b))x − ac2
k−2

σ(c2
k−2

σ(b))x2. Since R is σ-

compatible (σ, δ)-SILS Armendariz ring and ac2
k−1

b = 0, then f2k−2(x)g2k−2(x) =

0, by Lemma 2.5(1). Then by Theorem 2.10, ac2
k−2

σ(b) = 0 and hence ac2
k−2

b = 0,

since R is σ-compatible. Now Take f2k−3(x) = a − ac2
k−3

x and g2k−3(x) =

b + c2
k−3

δ(b) + c2
k−3

σ(b)x. Then we have f2k−3(x)g2k−3(x) = ab + ac2
k−3

δ(b) +

ac2
k−3

σ(b)x−ac2k−3

δ(b)−ac2k−3

σ(b)x−ac2k−3

δ(c2
k−3

δ(b))−ac2k−3

σ(c2
k−3

δ(b))x−
ac2

k−3

δ(c2
k−3

σ(b))x − ac2
k−3

σ(c2
k−3

σ(b))x2. Since we showed ac2
k−2

b = 0, then

f2k−3(x)g2k−3(x) = 0, by Lemma 2.5(1). Then by Theorem 2.10, ac2
k−3

σ(b) = 0

and hence ac2
k−3

b = 0, since R is σ-compatible. Continuing in this way, (k-1)-

times we have ac2
k−(k−1)

b = ac2b = 0. Thus we have f1(x)g1(x) = 0, where
f1(x) = a − acx and g1(x) = b + cδ(b) + cσ(b)x. So by σ-compatibility of R and
Theorem 2.10, we obtain acb = 0, as desired.

There is another important ring-theoretic condition common in the literature
related to the zero-divisor and annihilator conditions we have been studying. Faith
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in [12] called a ring R right zip if the right annihilator of a subset X of R is zero,
rR(X) = 0, then there exists a finite subset Y ⊆ X such that rR(Y ) = 0; equiva-
lently, for a left ideal L of R with rR(L) = 0, there exists a finitely generated left
ideal L1 ⊆ L such that rR(L1) = 0. Zelmanowitz [40] noted that any ring satisfying
the descending chain condition on right annihilators is right zip, and he also showed
that there exist commutative zip rings which do not satisfy the descending chain
condition on (right) annihilators.

Hong et al. [26, Theorem 11], proved that an Armendariz ring R is right zip if
and only if so is R[x]. Now we turn our attention to the relationship between the zip
property of a ring R and these of the skew inverse Laurent series ring R((x−1;σ, δ)).
As an application of (σ, δ)-SILS Armendariz rings, we have the following theorem,
that generalizes the Hong et al’s result.

Theorem 2.12. Let R be an σ-compatible (σ, δ)-SILS Armendariz ring. Then R
is right zip if and only if R((x−1;σ, δ)) is right zip.

Proof. Suppose that S = R((x−1;σ, δ)) is right zip. Let X be a subset of R such
that rR(X) = 0. If f(x) =

∑m
i=−∞ aix

i ∈ rS(X), then ai ∈ rR(X) = 0 and so
f(x) = 0. Hence rS(X) = 0 and since S is right zip, there exists a finite set Y ⊆ X
such that rS(Y ) = 0. Hence rR(Y ) = rS(Y ) ∩ R = 0. Therefore R is a right zip
ring. Conversely, suppose that R is right zip and let X ⊆ S such that rS(X) = 0.
For f(x) =

∑m
i=−∞ aix

i ∈ S, Cf denotes the set of coefficients of f(x), and for
a subset V of S, CV denotes the set

⋃
f∈V Cf . Thus rR(CX) = 0, since R is σ-

compatible and (σ, δ)-SILS Armendariz. Since R is right zip, there exists a finite
subset Y0 ⊆ CX such that rR(Y0) = 0. Now for each a ∈ Y0 there exists ga(x) ∈ X
such that at least one of the coefficients of ga(x) is a. Assume that Y be minimal
between those subsets of X with the property that for each a ∈ Y0, ga(x) ∈ Y . Let
Y1 = CY . Then Y0 ⊆ Y1 and so rR(Y1) = 0. Now, we show that rS(Y ) = 0. Let
g(x) ∈ rS(Y ). Then f(x)g(x) = 0 for each f(x) ∈ Y . Since R is (σ, δ)-SILS Armen-
dariz and σ-compatible, then by Theorem 2.10, ab = 0 for each a ∈ Cf and b ∈ Cg.
Hence b ∈ rR(Y1) = 0, a contradiction. Thus g(x) = 0 and so rS(Y ) = 0, as desired.

The Morita invariance of a property of R can be checked by testing if it passes to
matrix ringsMn(R) and corner rings eRe, with e2 = e a full idempotent (ReR = R).
It turns out that the (linearly) (σ, δ)-SILS Armendariz property is badly behaved
with regards to Morita invariance.

Example 2.13. Let R1 be any ring and R = M2(R1) be the 2-by-2 full matrix

ring over R1. Suppose σ be an automorphism of R, defined by σ

((
a b
c d

))
=(

a −b
−c d

)
. Let f(x) = (E11−E12)x−1−E11 and g(x) = (E22−E12)x−1+E22 ∈

R((x−1;σ)). Then it is easy to see that f(x)g(x) = 0, but (E11 − E12)x−1E22 =
−E12. Thus R is not (linearly) σ-SILS Armendariz.
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Recall that for an ideal I of R, if σ(I) ⊆ I, then σ̄ : R/I → R/I defined by
σ̄(a+ I) = σ(a) + I is an endomorphism of a factor ring R/I. If σ is an automor-
phism and σ(a) /∈ I, for each a ∈ R \ I, then σ̄ is automorphism. The following
example, shows that the class of (linearly) σ-SILS Armendariz rings are not closed
under homomorphic images.

Example 2.14. Let R be the ring of quaternions with integer coefficients. Then
R is a domain, and so R is σ-SILS Armendariz for any automorphism σ of R. But,
R/qR is isomorphic to the 2-by-2 matrix ring over the Galois field of order q by the
argument in [18, Example 2A], where q is an odd prime integer. Thus R/qR is not
linearly σ̄-SILS Armendariz, as shown in Example 2.13.

Clearly, if R is a domain with an automorphism σ, then R is a σ-SILS Armen-
dariz ring. In particular, for a completely prime ideal P (i.e., if ab ∈ P , then a ∈ P
or b ∈ P ), a factor ring R/P is σ̄-SILS Armendariz ring. The following example
shows that there exists an automorphism of an Abelian ring R whose prime radical
P (R) is a completely semiprime ideal and σ-SILS Armendariz ring. Also R/P (R)
is a σ̄-SILS Armendariz ring, but R is not (linearly) σ-SILS Armendariz.

Example 2.15. Let R =

{(
a c
0 b

)
| a− b ≡ c ≡ 0 (mod 2) and a, b, c ∈ Z

}
and

let σ : R → R be an automorphism defined by σ

((
a c
0 b

))
=

(
a −c
0 b

)
.

Clearly P (R) =

{(
0 c
0 0

)
| c ≡ 0 (mod 2)

}
is σ-SILS Armendariz ring. Also,

since P (R) is completely semiprime and σ(P (R)) = P (R), then Aσ(A) ∈ P (R) im-
plies that A ∈ P (R). So R/P (R) is a σ̄-SILS Armendariz ring. Now we prove that R

is not a (linearly) σ-SILS Armendariz ring. Let f(x) =

(
0 2
0 0

)
x−1 +

(
2 2
0 0

)
and g(x) =

(
0 2
0 0

)
x−1 +

(
0 2
0 −2

)
∈ R((x−1;σ)). Then we have f(x)g(x) =

0, but

(
0 2
0 0

)
x−1

(
0 2
0 −2

)
=

(
0 −4
0 0

)
. Thus R is not a (linearly) σ-SILS

Armendariz ring, as desired.

The following example shows that there exists a non-identity automorphism σ
of a ring R such that I is σ-SILS Armendariz ring (as a ring without identity) and
R/I is σ̄-SILS Armendariz ring, for any non-zero proper ideal I of R, but R is not
(linearly) σ-SILS Armendariz ring.

Example 2.16. Let F be any field and consider a ring R =

(
F F
0 F

)
. Suppose

that σ be an automorphism of R defined by σ

((
a b
0 c

))
=

(
a −b
0 c

)
. Let

f(x) = (E11 + E12)x−1 + E11 and g(x) = (E12 + E22)x−1 − E22 ∈ R((x−1;σ)).
Then it is easy to see that f(x)g(x) = 0, but (E11 + E12)x−1E22 6= 0 and hence
R is not (linearly) σ-SILS Armendariz ring. Note that the only non-zero proper
ideals of R are
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I =

(
F F
0 0

)
, J =

(
0 F
0 F

)
and K =

(
0 F
0 0

)
.

Clearly, R/I is σ̄-SILS Armendariz ring, since R/I ∼= F . Now, we show that I is
σ-SILS Armendariz ring. Assume that F (x)G(x) = 0, where F (x) =

∑m
i=−∞Aix

i

and G(x) =
∑n

j=−∞Bjx
j in I((x−1;σ)). Also we let Ai =

(
ai bi
0 0

)
for each

i ≤ m and Bj =

(
cj dj
0 0

)
for each j ≤ n. We know Amσ

m(Bn) = 0 by look-

ing at the degree m + n term in F (x)G(x) = 0. Therefore amcn = amdn = 0.
If am 6= 0, then Bn = 0, a contradiction; hence am = 0. This implies that
Amσ

m(Bj) = 0, for all j ≤ n. On the other hand, by looking at the degree
m + n − 1 term in F (x)G(x) = 0, we have Am−1σ

m−1(Bn) + Amσ
m(Bn−1) = 0

and so Am−1σ
m−1(Bn) = 0. Similar above, one can see that am−1 = 0, since

Bn 6= 0 and consequently Am−1σ
m−1(Bj) = 0, for each j ≤ n. By continuing in

this way, we have Aiσ
i(Bj) = 0 and so I is σ-SILS Armendariz ring. Similarly,

one can see that R/J is σ̄-SILS Armendariz and J is σ-SILS Armendariz ring. Fi-
nally, it can be easily checked that K is σ-SILS Armendariz ring. Moreover, R/K
is σ̄-SILS Armendariz ring, since R/K is reduced and σ̄ is an identity map on R/K.

We have shown that the (σ, δ)-SILS Armendariz property is badly behaved with
regards to Morita invariance. One might ask whether the (σ, δ)-SILS Armendariz
property passes to corner rings. In the following result, we show that this is true
for central idempotents. The following is a characterization of an Abelian ring R
to be (σ, δ)-SILS Armendariz in terms of its idempotents.

Theorem 2.17. Let R be an Abelian ring, σ an automorphism and δ an σ-
derivation of R. Then the following statements are equivalent :

(i) R is (σ, δ)-SILS Armendariz;
(ii) For each idempotent e ∈ R such that σ(e) = e and δ(e) = 0, eR and (1−e)R

are (σ, δ)-SILS Armendariz;
(iii) For some idempotent e ∈ R such that σ(e) = e and δ(e) = 0, eR and (1−e)R

are (σ, δ)-SILS Armendariz.

Proof. We only need to prove the (iii) ⇒ (i). Suppose that for some idempo-
tent e ∈ R such that σ(e) = e and δ(e) = 0, eR and (1 − e)R are (σ, δ)-SILS
Armendariz and let f(x) =

∑m
i=−∞ aix

i and g(x) =
∑n

j=−∞ bjx
j ∈ R((x−1;σ, δ))

with f(x)g(x) = 0. Then (ef(x))(eg(x)) = 0 and ((1 − e)f(x))((1 − e)g(x)) = 0.
Since eR and (1 − e)R are (σ, δ)-SILS Armendariz, we have eaix

iebjx
j = 0 and

(1 − e)aixi(1 − e)bjxj = 0, for each i, j. On the other hand, since σ(e) = e and
δ(e) = 0, then we have σ(ebj) = eσ(bj) and δ(ebj) = eδ(bj). Hence, one can see that
eaix

iebjx
j = e(aix

ibjx
j) = 0 and (1 − e)aixi(1 − e)bjxj = (1 − e)(aixibjxj) = 0.

Therefore aix
ibjx

j = e(aix
ibjx

j) + (1 − e)(aixibjxj) = 0. Hence R is (σ, δ)-SILS
Armendariz.
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Let R be a ring and σ denotes an endomorphism of R with σ(1) = 1. In [22]
the authors introduced skew triangular matrix ring as a set of all triangular ma-
trices with addition point-wise and a new multiplication subject to the condition
Eijr = σj−i(r)Eij . So (aij)(bij) = (cij), where cij = aiibij + ai,i+1σ(bi+1,j) + · · ·+
aijσ

j−i(bjj), for each i ≤ j and denoted it by Tn(R, σ).

The subring of the skew triangular matrices with constant main diagonal is
denoted by S(R,n, σ); and the subring of the skew triangular matrices with constant
diagonals is denoted by T (R,n, σ). We can denote A = (aij) ∈ T (R,n, σ) by
(a11, . . . , a1n). Then T (R,n, σ) is a ring with addition point-wise and multiplication
given by:
(a0, . . . , an−1)(b0, . . . , bn−1) = (a0b0, a0 ∗ b1 +a1 ∗ b0, . . . , a0 ∗ bn−1 + · · ·+an−1 ∗ b0),
with ai ∗ bj = aiσ

i(bj), for each i and j. Therefore, clearly one can see that
T (R,n, σ) ∼= R[x;σ]/(xn), where (xn) is the ideal generated by xn in R[x;σ].
Also we consider the following two subrings of S(R,n, σ), as follows:

A(R,n, σ) =


bn2 c∑
j=1

n−j+1∑
i=1

ajEi,i+j−1 +

n∑
j=bn2 c+1

n−j+1∑
i=1

ai,i+j−1Ei,i+j−1

 ;

B(R,n, σ) = {A+ rE1k |A ∈ A(R,n, σ) and r ∈ R} n = 2k ≥ 4.

Let α be an endomorphism of a ring R, σ an automorphism of R and δ an σ-
derivation of R such that ασ = σα and δα = αδ. The automorphism σ of R is
extended to the automorphism σ̄ : S → S defined by σ̄((aij)) = (σ(aij)) and the σ-
derivation δ of R is also extended to δ̄ : S → S defined by δ̄((aij)) = (δ(aij)), where
S is one of the rings S(R,n, α), A(R,n, α), B(R,n, α) or T (R,n, α). Also, the map
ᾱ : R((x−1;σ, δ))→ R((x−1;σ, δ)) defined by ᾱ(

∑m
i=−∞ aix

i) =
∑m

i=−∞ α(ai)x
i is

an endomorphism of R((x−1;σ, δ)).

Proposition 2.18. Let σ be a rigid automorphism and α an endomorphism of a
ring R such that ασ = σα. If R is an α-rigid ring, then R((x−1;σ, δ)) is ᾱ-rigid.

Proof. Let f(x) =
∑m

i=−∞ aix
i ∈ R((x−1;σ, δ)) and f(x)ᾱ(f(x)) = 0. So we

have amσ
m(α(am)) = 0 and consequently amα(σm(am)) = 0, since ασ = σα. Thus

amσ
m(am) = 0, since R is α-rigid and so am = 0, since R is σ-rigid. Hence f(x) = 0

and the proof is complete.

Theorem 2.19. Let σ be an automorphism and δ be any σ-derivation of a ring R.
Then R is σ-rigid if and only if R is reduced and (σ, δ)-SILS Armendariz.

Proof. It is clear that each σ-rigid ring is reduced. Also, by Theorem 2.6 each
σ-rigid ring is (σ, δ)-SILS Armendariz. Now, suppose that R is reduced and (σ, δ)-
SILS Armendariz. We will prove that R is σ-rigid. Let aσ(a) = 0 for a ∈ R. Now,
consider the elements f(x) = σ(a) + σ(a)x and g(x) = a− σ(a)x ∈ R((x−1;σ, δ)),
then it is not hard to see that f(x)g(x) = 0. Since R is (σ, δ)-SILS Armendariz, we
have σ(a)σ(a) = 0 and hence a = 0, since σ is automorphism and R is reduced.
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Theorem 2.20. Let α be a rigid endomorphism of a ring R. Then the following
statements are equivalent:

(i) R is an σ-rigid ring;
(ii) For each integer n ≥ 2, D is an (σ̄, δ̄)-SILS Armendariz ring;
(iii) For some integer n ≥ 2, D is an (σ̄, δ̄)-SILS Armendariz ring,

where D is one of the rings A(R,n, α), B(R,n, α) or T (R,n, α).

Proof. (i) ⇒ (ii) We only prove this theorem for the case D = T (R,n, α), be-
cause the proof of the other cases are similar. It is not hard to see that there ex-
ists an isomorphism of rings ϕ : T (R,n, α)((x−1; σ̄, δ̄)) → T

(
R((x−1;σ, δ)), n, ᾱ

)
,

given by ϕ(
∑r

k=−∞Akx
k) = (fij), where Ak = (a

(k)
ij ) in T (R,n, α) and fij(x) =∑r

k=−∞ a
(k)
ij x

k in R((x−1;σ, δ)), for each k ≤ r and 1 ≤ i, j ≤ n. Let p(x) =∑r
k=−∞Akx

k and q(x) =
∑s

l=−∞Blx
l be elements in T (R,n, α)((x−1; σ̄, δ̄)) such

that p(x)q(x) = 0, where Ak = (a
(k)
ij ) and Bl = (b

(l)
ij ) in T (R,n, α), for k ≤ r

and l ≤ s. Thus (fij(x))(gij(x)) = 0, where fij(x) =
∑r

k=−∞ a
(k)
ij x

k and gij(x) =∑s
l=−∞ b

(l)
ij x

l in R((x−1;σ, δ)), for 1 ≤ i, j ≤ n. Since R is α-rigid, R((x−1;σ, δ)) is

ᾱ-rigid, by Proposition 2.18. Thus fiw(x)gwj(x) = 0, for each i, j, w ∈ {1, . . . , n}.
Also, R is an (σ, δ)-SILS Armendariz ring, by Theorem 2.6, since R is σ-rigid. So

a
(k)
iw x

kb
(l)
wjx

l = 0, for each k ≤ r and l ≤ s. Thus Akx
kBlx

l = 0 and hence T (R,n, α)

is an (σ̄, δ̄)-SILS Armendariz ring.
(ii) ⇒ (iii) It is clear.
(iii) ⇒ (i) Assume that for some integer n ≥ 2, T (R,n, α) is an (σ̄, δ̄)-SILS Ar-
mendariz. First of all notice that R is (σ, δ)-SILS Armendariz. This is because,
if we take f(x) =

∑m
i=−∞ aix

i and g(x) =
∑n

j=−∞ bjx
j ∈ R((x−1;σ, δ)) such

that f(x)g(x) = 0, then we have F (x)G(x) = 0, where F (x) =
∑m

i=−∞Aix
i and

G(x) =
∑n

j=−∞Bjx
j ∈ T (R,n, α)((x−1; σ̄, δ̄)), such that Ai = aiIn and Bj = bjIn,

for each i and j. Thus Aix
iBjx

j = 0 and consequently aix
ibjx

j = 0. Hence
R is (σ, δ)-SILS Armendariz, and hence σ(e) = e and δ(e) = 0 for each idem-
potent e ∈ R, by Proposition 2.9. Now, we shall prove that R is σ-rigid. Let

n = 2 and rσ(r) = 0. Suppose that f(x) =

(
0 1
0 0

)
−
(
ασ(r) 0

0 ασ(r)

)
x

and g(x) =

(
0 1
0 0

)
+

(
σ(r) 0

0 σ(r)

)
x ∈ T (R, 2, α)((x−1; σ̄, σ̄)). Then it is

not hard to see that f(x)g(x) = 0, since rσ(r) = 0 and α is compatible. So

we have

(
0 1
0 0

)(
σ(r) 0

0 σ(r)

)
= 0, since T (R, 2, α) is (σ̄, δ̄)-SILS Armen-

dariz. Now, since α is compatible and σ is an automorphism, we have r = 0,
as needed. Next, suppose that there exist an integer n ≥ 3 such that T (R,n, α)
is (σ̄, δ̄)-SILS Armendariz and also let rσ(r) = 0 for r ∈ R. Taking the ele-
ments p(x) = (0, 0, 1, 0, . . . , 0)− (0, ασ(r), 0, . . . , 0)x and q(x) = (0, 0, . . . , 0, 1, 0)−
(0, . . . , 0, σ(r), 0, 0)x in T (R,n, α)((x−1; σ̄, σ̄)), by a similar argument as above we
can see that p(x)q(x) = 0, and hence (0, 0, 1, 0, . . . , 0)(0, . . . , 0, σ(r), 0, 0) = 0, since
T (R,n, α) is (σ̄, δ̄)-SILS Armendariz. Then α(σ(r)) = 0 and hence r = 0, since α
is compatible and σ is an automorphism of R.
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Recall that A(R, 2) = T (R,R) is the trivial extension of R. So by Theorem 2.20,
if R is an σ-rigid ring, then T (R,R) is (σ̄, δ̄)-SILS Armendariz ring.
But S(R,n, α) is not (σ̄, δ̄)-SILS Armendariz ring, where n > 3, even R is an σ-rigid
ring. Since E12E34 = 0 and E12E23E34 6= 0. Thus by Theorem 2.11, S(R,n, α) is
not (σ̄, δ̄)-SILS Armendariz ring, for n > 3.

In the following, we study the (σ, δ)-SILS Armendariz property of classical quo-
tient rings over (σ, δ)-SILS Armendariz rings. A ring R is called right Ore if given
a, b ∈ R with b regular (elements that are neither left nor right zero-divisors), there
exist a1, b1 ∈ R with b1 regular such that ab1 = ba1. Left Ore rings can be defined
similarly. It is well-known that R is a right Ore ring if and only if the classical
right quotient ring of R exists. If both right and left quotient rings exist, then they
are equal. Let F be a field and R the free algebra in two indeterminates over F .
Then R is a domain but can not be right (left) Ore. It is also well-known that
R is a right Ore domain if and only if the classical right quotient ring of R is a
division ring. Let R be a ring with a classical right quotient ring Q and let C(R)
denotes the set of all regular elements of R. Then each automorphism σ and each
σ-derivation δ of R, extends to Q, respectively, by setting σ̄(rc−1) = σ(r)σ(c)−1

and δ̄(rc−1) = (δ(r)− σ(r)σ(c)−1δ(c))c−1, for each r ∈ R and c ∈ C(R).

Theorem 2.21. Let R be an Ore ring with an automorphism σ and σ-derivation
δ. Then R is (linearly) (σ, δ)-SILS Armendariz if and only if the classical quotient
ring Q of R is (linearly) (σ̄, δ̄)-SILS Armendariz.

Proof. We only need to prove the sufficient condition. First we claim that for
each element g(x) ∈ Q((x−1; σ̄, δ̄)), there exists c ∈ C(R) such that g(x) =
f(x)c−1, for some f(x) ∈ R((x−1;σ, δ)), or equivalently g(x)c ∈ R((x−1;σ, δ)).
For each g(x) =

∑n
j=−k bjx

j ∈ Q((x−1; σ̄, δ̄)) (all bj are non-zero and n ∈ Z),

we define length(g(x)) = k + n + 1, and we work by induction on length(g(x))
to prove our claim. If length(g(x)) = 1, then g(x) = bc−11 x−k, where c1 ∈
C(R). Taking c = σk(c1), we deduce that g(x) = (bx−k)c−1 and c ∈ C(R),
since σ is an automorphism. Now assume that the claim is true for all g(x) ∈
Q((x−1; σ̄, δ̄)) with length(g(x)) < l and let g(x) =

∑n
j=−k bjx

j ∈ Q((x−1; σ̄, δ̄))

with n + k = l − 1, where all bj = ajc
−1
j are non-zero. Let cn = σn(d), for

some d ∈ C(R). Then anc
−1
n xnd = anx

n. So we have g(x)d = (a−kc
−1
−kx

−k +

· · · + an−1c
−1
n−1x

n−1)d + anx
n. By induction hypothesis, there exists e ∈ C(R)

such that (a−kc
−1
−kx

−k + · · · + an−1c
−1
n−1x

n−1)e ∈ R((x−1;σ, δ)). Thus we have

g(x)de = (a−kc
−1
−kx

−k + · · · + an−1c
−1
n−1x

n−1)de + anx
ne ∈ R((x−1;σ, δ)), where

de ∈ C(R), and the result follows. Now, suppose that R is (σ, δ)-SILS Armendariz
and let f(x) =

∑m
i=−∞ aic

−1
i xi and g(x) =

∑n
j=−∞ bjd

−1
j xj ∈ Q((x−1; σ̄, δ̄)) such

that f(x)g(x) = 0. Let aic
−1
i = p−1a′i and bjd

−1
j = q−1b′j with p, q ∈ C(R). Then

(
∑m

i=−∞ a′ix
i)q−1(

∑n
j=−∞ b′jx

j) = 0. By above claim, there exists s ∈ C(R) and∑n
j=−∞ b′′j x

j ∈ R((x−1;σ, δ)), such that q−1(
∑n

j=−∞ b′jx
j) = (

∑n
j=−∞ b′′j x

j)s−1.

Hence (
∑m

i=−∞ a′ix
i)(
∑n

j=−∞ b′′j x
j) = 0 in R((x−1;σ, δ)). Since R is (σ, δ)-SILS

Armendariz, we have a′ix
ib′′j x

j = 0, for each i ≤ m and each j ≤ n. Therefore

p−1a′ix
iq−1b′jx

j = 0. Hence (aic
−1
i )xi(bjd

−1
j )xj = 0, for each i ≤ m and j ≤ n.
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3. Radicals of Skew Inverse Laurent Series Rings

In the theory of rings, it is an important issue to investigate the coincidence of
certain radicals on a given class of rings. Perhaps the greatest unsolved problem
in non-commutative ring theory today is the Köthe’s Conjecture, which posits that
a ring with no non-zero nil ideals has no non-zero nil one-sided ideals. The Köthe
Conjecture has been resolved in several special cases, including for rings with Krull
dimension, for PI rings, and for algebras over uncountable fields. We will presently
add σ-compatible (σ, δ)-SILS Armendariz rings to this list. For more information
about the behavior of radical properties under polynomial extensions, we refer the
reader to the recent book [15].

Following [29], for a ring R, let N(R) denote the set of nilpotent elements of
R, N0(R) the Wedderburn radical of R (that is, the sum of all nilpotent ideals of
R), Ni`∗(R) the lower nil radical of R (i.e., the prime radical of R), L-rad(R) the
Levitzki radical of R (i.e., sum of all locally nilpotent ideals of R), Ni`∗(R) the
upper nilradical of R (i.e., sum of all nil ideals of R), and A(R) the sum of all nil
left ideals of R (which coincides with the sum of all nil right ideals of R). The
Köthe Conjecture is equivalent to the statement that A(R) is always nil, that is,
Ni`∗(R) = A(R) for every ring R.

Theorem 3.1. If R is σ-compatible (σ, δ)-SILS Armendariz ring, then we have:

N0(R) = Ni`∗(R) = L-rad(R) = Ni`∗(R) = A(R).

Proof. It is enough to prove that A(R) ⊆ N0(R). Now let x ∈ A(R). Since A(R)
is an ideal of R and A(R) ⊆ N(R), it follows that RxR ⊆ N(R). Then xn = 0 for
some n ∈ N. Since xn−1x = 0 and RxR is a nil ideal, we have xn−1yx = 0, for each
y ∈ RxR, by Theorem 2.11. Thus xn−1(RxR)x = 0. Hence xn−2xRxRx = 0. By
continuing this method, we have x(RxR)x(RxR)x · · ·x(RxR)x = 0. Therefore we
get (RxR)2n−1 = 0 and we are done.

Corollary 3.2. (i) Each semiprime σ-compatible (σ, δ)-SILS Armendariz ring has
no non-zero nil one-sided ideals.
(ii) Each σ-compatible (σ, δ)-SILS Armendariz ring satisfies the Köthe’s Conjecture.

Proposition 3.3. Let R be a σ-compatible (σ, δ)-SILS Armendariz ring and fi ∈
R((x−1;σ, δ)), for 1 ≤ i ≤ n. If f1 · · · fn = 0, then a1a2 · · · an = 0, where ai is any
coefficient of fi for each i.

Proof. We work by induction on n. By Theorem 2.10, the result is true for n = 2.
Now assume that the result is true for all m < n, and let f1f2 . . . fn = 0. Then by
Theorem 2.10, a1ah = 0 where a1 ∈ Cf1 and ah ∈ Cfh , where h = f2f3 . . . fn. So
(a1f2)f3 . . . fn = 0. But a1f2 is an element of R((x−1;σ, δ)) with coefficient a1bj ,
where bj is a coefficient of f2. By the induction hypothesis, for each coefficient a2
of f2 and each coefficient ai of fi, with 3 ≤ i ≤ n, we have a1a2 · · · an = 0 and the
proof is complete.
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Lemma 3.4. Let R be a σ-compatible (σ, δ)-SILS Armendariz ring. Then we have:
(i) If a1a2 · · · an = 0, then we have σk1(a1)σk2(a2) · · ·σkn(an) = 0, for all integers
k1, k2, . . . , kn.
(ii) If σk1(a1)σk2(a2) · · ·σkn(an) = 0, for some integers k1, k2, . . . , kn, then we
have a1a2 · · · an = 0.
(iii) If a1a2 · · · an = 0, then we have δk1(a1)δk2(a2) · · · δkn(an) = 0, for all positive
integers k1, k2, . . . , kn.

Proof. (i) Notice that if ab = 0, then aσk(b) = σk(a)b = 0 and also σk(a)δl(b) =
δl(a)σk(b) = 0 for all integer k and any positive integer l. Also, if σk(a)b = 0
for some integer k, then ab = 0. Now, we work by induction on n. Let n = 2
and a1a2 = 0, then σk1(a1)a2 = 0. Then we have σk2(σk1(a1)a2) = 0 and so
σk1+k2(a1)σk2(a2) = 0. So we have a1σ

k2(a2) = 0. Therefore σk1(a1)σk2(a2) = 0.
Now, suppose by induction that σk1(a1)σk2(a2) · · ·σkl(al) = 0, for all l < n and
all positive integers k1, k2, . . . , kl, when a1a2 · · · al = 0. Now, let a1a2 · · · an = 0.
Thus a1 . . . an−2(an−1an) = 0. Then σk1(a1) · · ·σkn−2(an−2)σkn−1(an−1an) = 0, by
induction hypothesis. So σk1(a1) · · ·σkn−2(an−2)σkn−1(an−1)σkn−1(an) = 0. Using
σ-compatibility of R, we have σk1(a1) · · ·σkn−2(an−2)σkn−1(an−1)an = 0, and then
σk1(a1) · · ·σkn−2(an−2)σkn−1(an−1)σkn(an) = 0. This finishes our proof.
(ii) The proof is similar to that of (i).
(iii) Since a1a2 · · · an = 0, then δk1(a1)a2 · · · an = 0. So by Proposition 2.5(1)
δk1(a1)δ(a2 · · · an) = 0, and hence δk1(a1)δ(a2)a3 · · · an+δk1(a1)σ(a2)δ(a3 · · · an) =
0. Since δk1(a1)a2 · · · an = 0, then we have σ(δk1(a1)a2)δ(a3 · · · an) = 0 and
then we have δk1(a1)σ(a2)δ(a3 · · · an) = 0. So δk1(a1)δ(a2)a3 · · · an = 0 and then
δk1(a1)δ(δ(a2)a3 · · · an) = 0, by Proposition 2.5(1). Hence δk1(a1)δ2(a2)(a3 · · · an)+
δk1(a1)σ(δ(a2))δ(a3 · · · an) = 0. Since we have δk1(a1)δ(a2)a3 · · · an = 0, then
σ(δk1(a1)δ(a2))δ(a3 · · · an) = 0, and hence we have δk1(a1)σ(δ(a2))δ(a3 · · · an) =
0. Then we obtain that δk1(a1)δ2(a2)(a3 · · · an). Continuing in this process we
get δk1(a1)δk2(a2)(a3 · · · an) = 0. So δk1(a1)δk2(a2)δ(a3 · · · an) = 0 and hence
δk1(a1)δk2(a2)δ(a3)(a4 · · · an)+ δk1(a1)δk2(a2)σ(a3)δ(a4 · · · an) = 0, by Proposi-
tion 2.5(1). Since we proved that δk1(a1)δk2(a2)(a3 · · · an) = 0, then we have
σ(δk1(a1)δk2(a2)a3)δ(a4 · · · an) = 0, and hence δk1(a1)δk2(a2)σ(a3)δ(a4 · · · an) = 0.
Then δk1(a1)δk2(a2)δ(a3)(a4 · · · an) = 0. By continuing in this fashion we receive
that δk1(a1)δk2(a2)δk3(a3)(a4 · · · an) = 0 and by a similar way as above, for all pos-
itive integers k1, k2, . . . , kn, we get δk1(a1)δk2(a2)δk3(a3) · · · δkn(an) = 0, as desired.

Proposition 3.5. Let R be a σ-compatible (σ, δ)-SILS Armendariz ring. If f(x)
and g(x) be in R((x−1;σ, δ)) and h(x) ∈ N

(
R((x−1;σ, δ))

)
, then f(x)g(x) = 0

implies f(x)h(x)g(x) = 0.

Proof. Let f(x) =
∑m

i=−∞ aix
i, g(x) =

∑n
j=−∞ bjx

j and h(x) =
∑l

k=−∞ ckx
k ∈

R((x−1;σ, δ)) such that for some positive integer p, we have [h(x)]p = 0. Then by
Proposition 3.3, cpk = 0 for each k ≤ l. On the other hand, since f(x)g(x) = 0,
then by Proposition 3.3, aibj = 0 for each i ≤ m and j ≤ n. Hence by Theo-
rem 2.11, aickbj = 0 for each i ≤ m, j ≤ n and k ≤ l. Then by Lemma 3.4,
σri(ai)σ

sk(ck)σtj (bj) = 0 for all integers ri, sk, tj and also δmi(ai)δ
nk(ck)δqj (bj) =

0, for all positive integers mi, nk, qj . So f(x)h(x)g(x) = 0, and the result follows.
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Theorem 3.6. Let R be σ-compatible (σ, δ)-SILS Armendariz ring. Then we have:

N0(R((x−1;σ, δ))) = Ni`∗(R((x−1;σ, δ))) = L-rad(R((x−1;σ, δ))) =

Ni`∗(R((x−1;σ, δ))) = A(R((x−1;σ, δ))).

Proof. Using Proposition 3.5, the proof is similar to that of Theorem 3.1.

Corollary 3.7. Let R be σ-compatible (σ, δ)-SILS Armendariz ring. Then the skew
inverse Laurent series ring R((x−1;σ, δ)) satisfies the Köthe’s Conjecture.

Theorem 3.8. Let R be a σ-compatible (σ, δ)-SILS Armendariz ring and let
S = R((x−1;σ, δ)). Then we have Ni`∗(S) ∩R = N0(R).

Proof. Let a ∈ Ni`∗(S) ∩ R. Clearly, a ∈ Ni`∗(R). Thus by Theorem 3.1,
we have a ∈ N0(R). Hence Ni`∗(S) ∩ R ⊆ N0(R). Conversely, let a ∈ N0(R).
Therefore (RaR)k = 0, for some k ≥ 1. We prove that (f(x)ag(x))k = 0, where
f(x) =

∑m
i=−∞ rix

i and g(x) =
∑n

j=−∞ sjx
j ∈ S. Since (RaR)k = 0, we have∏k

l=1 blacl = 0, where bl and cl are the coefficients of f(x) and g(x), respectively,
for all 1 ≤ l ≤ k. So (f(x)ag(x))k = 0, by Lemma 3.4. Hence a ∈ Ni`∗(S) and so
N0(R) ⊆ Ni`∗(S) ∩R.

Corollary 3.9. Let R be a σ-compatible (σ, δ)-SILS Armendariz ring and let
S = R((x−1;σ, δ)). Then we have:

N0(R) = N0(S) ∩ R = Ni`∗(R) = Ni`∗(S) ∩ R = L-rad(R) = L-rad(S) ∩ R =
Ni`∗(R) = Ni`∗(S) ∩R = A(R) = A(S) ∩R.

Proof. The result follows by Theorems 3.1, 3.6 and 3.8.

Corollary 3.10. Let R be a σ-compatible (σ, δ)-SILS Armendariz ring and let
S = R((x−1;σ, δ)). Then:

(i) J(R[x]) = N0(R)[x] = Nil∗(R)[x]=L-rad(R)[x]=Nil∗(R)[x] =A(R)[x].

(ii) J(S[y]) = N0(S)[y] = Nil∗(S)[y]=L-rad(S)[y]=Nil∗(S)[y] =A(S)[y].

Proof. It follows from Theorems 3.1 and 3.6 and [29, Exercise 10.25].

Corollary 3.11. Let R be a σ-compatible (σ, δ)-SILS Armendariz ring and let
S = R((x−1;σ, δ)). Then:

(i) Nil∗(Mn(R))=Mn(Nil∗(R))=Mn(Nil∗(R))=Nil∗(Mn(R)).

(ii) Nil∗(Mn(S))=Mn(Nil∗(S))=Mn(Nil∗(S))=Nil∗(Mn(S)).

Proof. It follows from Theorems 3.1 and 3.6 and [29, Exercise 10.25].
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Theorem 3.12. Let R be a σ-compatible (σ, δ)-SILS Armendariz ring and let
S = R((x−1;σ, δ)). If R satisfies any one of the following conditions, then we have
Ni`∗(S) = N0(R)((x−1;σ, δ)).

(i) R is left or right Goldie;
(ii) R has the ACC on ideals;
(iii) R is a ring with right Krull dimension;
(iv) R has the ACC and DCC on left annihilators;
(v) R is a ring with ACC on both right and left annihilators.

Proof. First, we prove that if R is σ-compatible (σ, δ)-SILS Armendariz ring,
then Ni`∗(S) ⊆ N0(R)((x−1;σ, δ)). Let f(x) =

∑m
i=−∞ aix

i ∈ Ni`∗(S). Thus
the ideal generated by f(x) in S is nil. So RaiR is nil ideal in R and hence
ai ∈ Ni`∗(R) = N0(R), for each i ≤ m, by Lemma 3.4. Conversely, let f(x) =∑m

i=−∞ aix
i ∈ N0(R)((x−1;σ, δ)). Since R satisfies one of the above conditions,

N0(R) is a nilpotent ideal of R, by [30, Theorem 1], [29, Theorem 4.12], [32],
[24, Theorem 1] and [10, Theorem 1.34], respectively. Therefore (N0(R))k = 0,
for some k ≥ 1. Thus, by Lemma 3.4, we have [g(x)f(x)h(x)]k = 0. Hence
N0(R)((x−1;σ, δ)) ⊆ Ni`∗(S).

A ring R is called 2-primal if its prime radical contains every nilpotent element of
R. G.F. Birkenmeier et al. [9, Proposition 2.6], proved that the 2-primal condition
is inherited by ordinary polynomial extensions. Ore extensions do not generally
preserve the 2-primal condition (see [13] and [14]).

Theorem 3.13. Let R be a σ-compatible (σ, δ)-SILS Armendariz ring and let
S = R((x−1;σ, δ)). Then we have:
(1) R is 2-primal if and only if S is 2-primal.
(2) R is semi-commutative if and only if S is semi-commutative.
(3) R is reversible if and only if S is reversible.
(4) R is symmetric if and only if S is symmetric.

Proof. (1) First suppose that S is 2-primal. Let a ∈ Ni`(R). So a ∈ Ni`(S)
and a ∈ Ni`∗(S) ∩ R. Thus a ∈ Ni`∗(R), by Corollary 3.9. Hence R is 2-primal.
Conversely, suppose that R is 2-primal. Let f(x) =

∑m
i=−∞ aix

i ∈ Ni`(S). So

[f(x)]k = 0, for some k ≥ 1. Therefore
∏k

l=1 rl = 0, where rl is a coefficient of f(x),
for each 1 ≤ l ≤ k, by Proposition 3.3. So ai ∈ Ni`(R) = Ni`∗(R) = Ni`∗(R), for
all i. Therefore RaiR is nil. Now, we get r1(r2 · · · rk) = 0. Thus r1(Rs1R)r2 · · · rk =
0, where s1 is a coefficient of f(x), by Theorem 2.11. By continuing in this way,
we get r1Rs1Rr2Rs2 · · · sk−1Rrk = 0, where si is the coefficient of f(x), for each
1 ≤ i ≤ k − 1. Therefore (g(x)f(x)h(x))2k−1 = 0, for each g(x) and h(x) ∈ S, by
Lemma 3.4. Hence f(x) ∈ Ni`∗(S) = Ni`∗(S).
(2) Let R be a semi-commutative ring and f(x)g(x) = 0, where f(x) =

∑m
i=−∞ aix

i

and g(x) =
∑n

j=−∞ bjx
j ∈ S. Then aibj = 0 for each i ≤ m and j ≤ n, by Theorem

2.10. Since R is semi-commutative, airbj = 0 for each r ∈ R, i ≤ m and j ≤ n.
Hence by Lemma 3.4, σk1(ai)σ

k2(r)σk3(bj) = 0 and δk4(ai)δ
k5(r)δk6(bj) = 0 for

each i ≤ m, j ≤ n and integers ki. Then f(x)h(x)g(x) = 0 for each h(x) ∈ S, and
hence S is semi-commutative. The proof of (3) and (4) are similar to that of (2).
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