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a Flag Algebra?
Alexander A. Razborov

Before attempting to answer the question from the
title, it would be useful to say a few words about
another question: what kind of problems have flag
algebras been invented for?

Let us consider three similar combinatorial
puzzles. Assume that we have a (simple, undirected)
graph with n vertices. What is the minimal number
of edges m (as a function in n) that guarantees
the existence of a triangle? Also, assuming that m
is above this threshold, how many triangles are
guaranteed to exist? Let us now offset everything
by one, and instead of graphs consider (simple)
3-graphs, i.e., sets of unordered triples (called
3-edges) on n vertices. We again ask, what is the
minimal number m of 3-edges that guarantees
the existence of four vertices such that all four
possible triples spanned by these vertices are in
the set of 3-edges?

The subarea of discrete mathematics that deals
with questions of this sort is called extremal
combinatorics, and it is very strategically located at
a crossroads between “pure” mathematics and its
applications. One good way to describe flag algebras
is as an attempt to expose and emphasize some
common mathematical structure underlying many
standard techniques in extremal combinatorics,
and a survey of concrete results obtained in this
way can be found in [1]. Before going into more
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detail, however, let me encourage the reader to
put this article aside and try to predict the current
status of the three problems from the previous
paragraph.

Ready? The first problem (on the threshold
value m(n)) was solved in a classic paper by
Mantel published in 1907. The second problem
(on the minimal number of triangles beyond the
threshold) had been open for some forty years.
It was asymptotically solved only recently using
flag algebras. The generalization to 3-graphs was
suggested by Turán in another classic paper written

in 1941; he conjectured thatm ≤ ( 5
9+o(1))

(
n
3

)
and

gave the first construction attaining this bound.
This conjecture remains unsolved despite repeated
attempts by many strong researchers, and it has
greatly stimulated the development of the whole
field. Some partial results toward Turán’s (3,4)-
conjecture (by the way, its analogues are open for
any values of the parameters 4 and 3 as long as
4 > 3 > 2), though, were obtained with the help
of flag algebras. As Sidorenko, one of the leading
experts in the area, put it in his survey dated 1995,
“The general problem of Turán having an extremely
simple formulation but being extremely hard to
solve, has become one of the most fascinating
extremal problems in combinatorics.”

Now, let us do one of the many proofs of Mantel’s
result: it will serve as a motivating running example
for our definitions. Let d1, . . . , dn be vertex degrees
in our graph, and let e(v) ≈ dv/n be the relative
degree of the vertex v ∈ {1,2, . . . , n}. (Strictly
speaking, e(v) = dv/(n − 1), but systematically
ignoring low-order terms is one of the most basic
principles of the theory we are discussing.) We
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have
(1)

0≤ 1
n

n∑
v=1

(e(v)− 1
2
)2≈ 1

n3

∑
v
d(v)2− 1

n2

∑
v
d(v)+1

4
.

The term (1/n2)
∑
v d(v) is easy to interpret: it

is simply (remember that we are ignoring low-order

terms!) the edge density ρ (=m/
(
n
2

)
). To calculate

(1/n3)
∑
v d(v)2, we use double counting and we

look at configurations in our graph spanned by
three vertices. We can see there are 0, 1, 2, or
3 edges, and let us denote by I3, P̄3, P3, K3 the
respective densities or probabilities with which
these configurations occur (“I” stands for “inde-
pendent”, “P” stands for “path”, “P̄” stands for
“complement of a path”, and “K” stands for a
misspelled “clique”). Then a moment’s reflection
reveals that (1/n3)

∑
v d(v)2 ≈ (1/3)P3 +K3: only

these two cases contribute to the sum, and K3

contributes thrice as much since we have three
different choices of v in it. But ρ can also be
expressed in these terms as ρ = 1

3 P̄3 + 2
3P3 + K3:

we generate a random pair of vertices in two steps,
first by picking a random triple and then by select-
ing a random pair within this triple. Plugging all
this into (1), after simple calculations we conclude
that ρ ≤ (1/2)− P̄3+K3. Thus, ρ > 1/2 implies the
existence of triangles, and, moreover, their density
K3 satisfies K3 ≥ ρ − 1/2. If we are slightly more
careful and instead of (1/n) ·

∑n
v=1(e(v)− 1/2)2

compute (1/n)·
∑n
v=1(e(v)−ρ)2 (that is, the actual

variance of the degree sequence), we will get a
better bound K3 ≥ ρ(2ρ − 1) proved by Goodman
in 1959. This latter bound had remained the best
known for the second problem on our list until it
was superseded in a beautiful paper by Bollobás
(1975).

Let us now see which kind of structure we
can extract from this template (all this material
can be found in [2]). Our target graph G is large
and unknown. Thus, for every fixed graph H we
introduce a formal real-valued variable with the
same name and the intuitive meaning “the density
of induced copies of H in G” (in the argument
above, H was one of ρ, I3, P̄3, P3, or K3). As we
often need to sum these quantities with real
coefficients, we form the linear space of formal
(finite) linear combinations of these variables. The
identity ρ = 1

3 P̄3 + 2
3P3 + K3 that we used above

can be widely generalized: the density of any fixed
graph H can be expressed in terms of densities
of graphs with a fixed but larger number of
vertices. We factor our space out by these relations.
Multiplication is also available: for example, ρ2

can be expressed as a linear combination of [the
densities of] graphs on four vertices; this is done
by double counting similar to our calculation of

(1/n3)
∑
v d(v)2. All these developments give us a

commutative associative algebraA0.
Furthermore, when the size of the target graphG

tends to infinity, the densities of induced copies of
H converge to an algebra homomorphism φ from
A0 to R. These algebra homomorphisms possess
an extra property that φ(H), being a density, is
nonnegative for any graph H. Then it turns out
that we also have an important “completeness
result”: every abstract algebra homomorphism
fromA0 to R with this nonnegativity property (let
us call their set Hom+(A0,R)) can be obtained
from a convergent sequence {Gn}. In other words,
the object Hom+(A0,R) defined in the best math-
ematical traditions quite abstractly nonetheless
corresponds exactly to the class of extremal prob-
lems we intend to study. For example, the second
problem on our list can be reformulated like this:
given x ∈ [0,1], compute the minimal possible
value of φ(K3), where φ ∈ Hom+(A0,R) satisfies
φ(ρ) = x, and, yes, we do mean min here, not inf,
since Hom+(A0,R) is compact. The computation
does begin with the words “let us fix once and for
all an extremal φ.”

Having thus reformulated the questions of study
in the appropriate language, the rest of the theory
is basically devoted to developing useful syntactic
tools for proving theorems about the behavior
of the limit densities φ(H). Most of these tools
have evolved from analogous methods employed
in finite arguments, but, again, the mathematical
structure allows us to search for the desired proofs
either completely automatically or in an interactive
computer-human mode. This allows us to expand
the search space by an order of (literally!) hundreds
or thousands. We once more refer to [1] for a
survey of concrete results that have been obtained
with this method, and now we review some of
these tools.

Our account above was tailored to the case of
ordinary graphs, but this was done only for simplic-
ity of exposition. The theory of flag algebras was
deliberately set up in such a way that it applies in a
uniform way to arbitrary combinatorial structures:
hypergraphs, directed graphs, mixtures of these,
colored versions of these, you name it. In logical
terms, the set-up can be described as a “universal
theory in a language containing only predicate
symbols,” but the only property that is actually
needed is that a subset of vertices of a model spans
an (induced) submodel. This is paramount since
structures other than simple graphs are where the
most important open problems in the area reside,
Turán’s (3,4)-problem being just the tip of the
iceberg.

Next, our definitions can be readily generalized
to the case when all our models are required to
contain k distinguished “base” vertices (for an
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analogy, the reader should think of base points in
algebraic topology) that must be preserved by all
mapping involved. This clearly makes sense only
when we also specify what we see on c1, . . . , ck
itself; for example, if k = 2, then in the graph theory
we should specify whether (c1, c2) is an edge or
not. Thus, we say that a type σ is simply a model
with the ground set {1,2, . . . , k}, a flag1 of type
σ is a model with k base vertices respecting the
structure of σ , and then (finally!) the flag algebra
Aσ and Hom+(Aσ ,R) are defined just as before.
As an example, let 1 be the (only) type of size 1,
and let e ∈A1 be an edge with one distinguished
vertex in it. Then, instead of computing the sum
(1/n3)

∑n
v=1 d(v)2 in (1), we could alternatively

express first e2 = K1
3 + P

1,c
3 , where K1

3 and P1,c
3 are

1-flags that are obtained from K3, P3, respectively,
by adding one base vertex which is the center of
the path in the case of P3.

Every flag algebra Aσ has a good supply of
elements that are guaranteed to be evaluated to
a nonnegative value by any φ ∈ Hom+(Aσ ,R):
these are the squares f 2 and their positive linear
combinations. We can also define a linear averaging
operator J·Kσ that generalizes the summation in
(1). For example, JK1

3K1 = K3, JP1,c
3 K1 = (1/3)P3,

which gives us another proof of what we did above
differently, Je2K1 = (1/3)P3 + K3. Now we have a
healthy supply of nonnegative elements inA0, too:
these are Jf 2Kσ , where f ∈ Aσ for some type σ ,
and their positive linear combinations, possibly
mixing up relations coming from different types.

It already turns out that these simple ideas
(called in [1] “plain methods”) can solve many open
problems if you look deep enough, i.e., for f 2 ∈Aσ

that involve flags on sufficiently many vertices
(from four to six in a typical application). It is
obvious from the look of most of these results that
they could hardly be obtained by hand and that
they do require computer assistance. Fortunately,
the question of “how to represent a specific f in the
form

∑
i αiJf 2

i Kσi (αi ≥ 0)” is completely answered
by semidefinite programming (SDP), and, equally
fortunately for flag algebras, for the latter we
have not only theoretical results (polynomial time
algorithms) but also good noncommercial packages
that really do the job. In my own work I most often
use CSDP, a package developed by Brian Borchers

1The choice of the term “flag” to stand for “a partially la-
beled combinatorial structure in which labeled vertices span
a prescribed model σ” is admittedly somewhat arbitrary. It
is largely suggested by a visual association: a few vertices
are fixed rigidly while many more are “free” and “waving”
through the model we are studying. It has very little to do
with other usages of this term in mathematics…incidentally,
I have never seen a good explanation of what increasing
sequences of linear spaces have to do with corporeal flags,
either.

(https://projects.coin-or.org/Csdp); it is
also used in the publicly available flagmatic
software (http://www.maths.qmul.ac.uk/~ev/
flagmatic/) by Emil R. Vaughan. One thing
that greatly hinders these developments is the
absence (to the best of my knowledge) of generic
SDP-solvers that also provide certificates of
feasibility/unfeasibility: many actual calculations
in flag algebras are performed so close to the
border between them that numerical results often
cannot be trusted.

Besides purely computational convenience, flag
algebras lead to more sophisticated structures
and objects that also have found applications in
concrete proofs; due to lack of space we can only
name some of them here (see [2] for all missing
details).

There are many useful constructions that allow
us to convert combinatorial objects of one sort
into objects of another sort. For example, given a
directed graph, we can view it as an ordinary graph
by erasing its orientation, or, given a 3-graph and
a vertex in it, we can look at its link, which is again
an ordinary graph. Constructions of this kind are
captured by the logical notion of an interpretation,
and in the language of flag algebras they lead to
algebra homomorphisms betweenAσ for different
theories. This allows us to conveniently move
around theorems (i.e., statements of the form
f ≥ 0) from one context to another.

The space Hom+(A0,R) is compact, which im-
plies that, for every extremal problem, there exists
an individual optimal solution to it. Extremality
can be exploited in a variety of ways: for exam-
ple, one can write (an analogue of) a functional
derivative according to some intuitive changes
and use its equality to zero as a new useful
relation not necessarily possessed by an arbitrary
φ ∈ Hom+(A0,R).

Tuples of densities φ ∈ Hom+(A0,R) encode
a surprising amount of information about the
intended object. For example, if we “pick” a
base vertex (or, more generally, a copy of a
more complicated type σ ) at random, then it
“should” give rise to a probability distribution
over φ ∈ Hom+(Aσ ,R). It turns out that this
information can already be uniquely retrieved
from φ even when we do not really have a good
idea which space we are sampling from. For
example, we can straightforwardly (say, avoiding
Szemeredi’s Regularity Lemma) determine the
fraction of vertices in a graph that have relative
degree at least 1/3 using φ only.

It is tempting to employ a similar axiomatic
approach in other areas where the Cauchy-Schwarz
inequality is used. The difficulties arising here are
of a more technical and practical nature: since
the group of symmetries is not as rich in those
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situations, it is more difficult to come up with a
calculus that is good not only theoretically but
also allows us to get new concrete results. Some
work in this direction, however, has already been
done; see [1, Section 4.2].

Last, but definitely not least, we are often
interested not only in the properties of the limit
densitiesφ itself, but also in what is the actual limit
object these densities correspond to (or, in more
logical terms, in the associated model theory). This
leads to the deep and beautiful theory of graph
limits with many connections to other disciplines,
and we highly recommend Lovász’s recent book [3]
for an introduction to the subject. We strongly feel
that emphasizing more connections between the
syntactical (flag algebras) and semantical (graph
limits) approaches to the same class of objects
should be very beneficial for both.
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