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1. Sphere packings

The Kepler Conjecture states that the maximum density for packing three-di-
mensional space by equal spheres is attained by the face-centered cubic lattice
packing (FCC packing), which has density π√

18
≈ 0.74048. It was stated by Jo-

hannes Kepler in 1611, whose booklet [31, pp. 14–17] included a woodcut of the
packing. Another periodic packing of density π√

18
, the hexagonal close packing

(HCP), was proposed by Barlow [1] in 1883 as a model for certain crystals. In 1900
the three-dimensional sphere packing problem was raised as part of Problem 18 on
Hilbert’s famous problem list [29].

A general approach to the Kepler Conjecture was suggested in the 1950s by
L. Fejes-Tóth [5, pp. 174–181], which he made more detailed in the 1960s in [6, pp.
295–299]. It proposes to prove a local density inequality around each sphere center.
The simplest form of such an inequality starts with a sphere packing and gives a
recipe to partition space R

3 into cells each containing one sphere, with the volume
of the cell assigned to the sphere, and then proving a lower bound on the volume
of every possible individual cell. More complicated forms of such inequalities can
be thought of as allowing cells to overlap, assigning a weight to points in the cell,
in effect sharing the volume of the overlaps between the spheres in overlapping
cells. A local density inequality proves the total weight assigned to any possible
cell that can be so constructed is bounded below by a particular constant. It
is “local” in the sense that the shape of the cell assigned a given sphere center
should depend only on the sphere centers within a fixed finite distance K of it.
(In practice, for spheres of radius 1, the distance K will be less than 3.) The
number of “nearby” sphere centers within this distance will be finite, call it N ,
and this data can be specified by 3N coordinates, reducing the analysis to a finite-
dimensional optimization problem. This problem is that of maximizing the amount
of (weighted) covered volume possible in a cell assigned to a given sphere center,
taken over all possible cell shapes determined by the nearby sphere centers. It is a
nonlinear optimization problem in that the total weight assigned to a cell might be
a very complicated nonlinear function of the nearby sphere centers, definitely not
continuously differentiable. Each such optimization problem, if solved, provides an
upper bound on the (local) sphere packing density, which then implies an upper
bound on the asymptotic sphere packing density. In 1958 Rogers [38] obtained in
this way an upper bound of ≈ 0.7797, using a division of space into tetrahedra.

Call a local density inequality optimal if the bound it gives will imply the Kepler
Conjecture. A priori it is not clear that optimal inequalities should exist. A local
density inequality makes a logically stronger statement than an asymptotic density
bound, in that removing a finite number of spheres does not change asymptotic
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densities, but would change local densities. One only verifies that an optimal lo-
cal density inequality exists after the fact, by establishing an upper bound, and
simultaneously finding a packing giving a matching lower bound.

The difficulty of the Kepler problem is that the simplest decompositions of space
do not yield optimal inequalities. There are two natural partitions of space as-
sociated to sphere centers, the Voronoi cell decomposition and the Delaunay de-
composition. The Voronoi cell assigned to a sphere center is the set of points in
space closer to it than to any other sphere center. The Delaunay decomposition
cuts space into simplices (i.e., tetrahedra) with corners at sphere centers. (It is
unique for generic locations of centers but has some nonuniqueness for nongeneric
point locations which must be resolved.) The simplest local density inequalities
associated to these would be the ratio of the amount covered by the intersection
of unit spheres with the cell to the total volume of the cell. The difficulty of the
sphere-packing problem is that neither of these local density inequalities is opti-
mal. For Voronoi cells it was conjectured in 1943 by L. Fejes-Tóth [4] that for unit
spheres the Voronoi cell of minimal volume is a regular dodecahedron, associated to
twelve touching spheres arranged at the vertices of a regular icosahedron; the frac-
tion of this cell occupied by the sphere is ≈ 0.75469, exceeding the Kepler bound.
(The Dodecahedral Conjecture was proved in 2010 by Hales and McLaughlin [26].)
For a Delaunay tetrahedron with sphere centers at its four vertices, a conjecturally
worst tetrahedron (for a saturated packing) has four edges of length 2 and two

adjacent edges of length
√
2(3 +

√
6). It has circumradius 2 and sphere packing

density ≈ 0.78469, exceeding the Rogers bound [22]. The search for optimal local
inequalities needs to consider hybrid partitions of space assigned to sphere centers
that choose Voronoi cells some of the time, Delaunay tetrahedra some of the time,
and perhaps something in between in other cases.

In the period 1998–2005 T. Hales, together with S. Ferguson, proved the Kepler
Conjecture by constructing an optimal inequality and verifying it, as described
below. Subsequent work indicates there exist many different optimal local density
inequalities for three-dimensional sphere packing, each giving the Kepler Conjecture
as a corollary, while giving different information on local packing densities.

Local density inequalities can be studied in any dimension (see [32]). At present
it is unknown whether optimal local density inequalities exist in dimensions other
than 1, 2, and 3. It is also not known in which dimensions there exists a densest
packing that is periodic, meaning a packing having its sphere centers located at a
finite set of translates of a full-dimensional lattice. It is expected that the latter
will be true in dimensions n = 8 and n = 24, with densest packings attained by
scaled versions of the E8 and Leech lattice, respectively. For detailed results on
sphere packings in all dimensions, consult Conway and Sloane [3].

2. Proof of the Kepler Conjecture

In 2005 and 2006 T. Hales, together with S. Ferguson, published a proof of
the Kepler Conjecture. An abridged version of the proof appeared in Annals of
Mathematics [12] in 2005, and a more detailed version of the proof appeared as
[13], [14], [15], [16], [17], [18]. In 2010, in the process of developing machinery
towards a formal proof, a small revision to this proof was found necessary, which
is described in Hales et al. [25]. All the papers in this proof are collected in the
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volume [24], including the revision, some earlier work of Hales [10], [11], and an
overview [33].

A major part of their achievement was the design of a local inequality which is
now known to be optimal, and which has the important property of being checkable
with computer assistance in a reasonable computation time. Their partition of space
and assignment of weights underlying this inequality is extremely complicated to
formulate. The proof that their local recipe yields an admissible partition of space
is itself difficult to check. Once this is done, analytic methods are used to verify
that two particular families of local configurations contain isolated local minima,
corresponding to Voronoi cells of the FCC and HCP packings, respectively. Then
thousands of other families of local configurations were shown to be suboptimal
by obtaining bounds saying the maximal packing density was strictly below the
minimum. The complicated form of the local inequality has features allowing the
nonlinear optimization problem to decompose into sums of simpler problems, each
of which separately could be bounded by linear inequalities encodable as linear
programs. This decomposition property permitted a classification of cases labeled
by auxiliary graphs and was key in reducing the computational verification to a
feasible size.

Call a packing extremal for a local density inequality if it achieves equality in
every cell of the decomposition. The extremal packings for the Hales–Ferguson local
density function were determined to be those packings in which every Voronoi cell
matches those of the HCC or FCP packing. There exist uncountably many distinct
extremal packings, obtained by stacking plane layers of spheres whose centers are
packed in a two-dimensional equilateral triangular lattice arrangement (“hexagonal
layers”), with a choice of two ways to stack each subsequent layer, after the first
two layers are fixed.

3. Formal proof

Since 2006 T. Hales has engaged in a project to produce a formal proof of the
Kepler Conjecture, terming the project Flyspeck [21].

A formal proof is a proof written in a formal logical system, which has been
verified by computer by a proof assistant that checks the proof logically line by
line. The program for the computer to check is called a proof script. Formal proofs
are more reliable than proofs written in mathematics journals; the latter are like
computer program specifications, while a formal proof is analogous to a computer
program itself.

There have been great advances in the last few years in obtaining formal proofs
of landmark mathematical results. These include formal proofs of the Four-color
theorem, and of the Feit–Thompson theorem, stating that all finite nonabelian
simple groups have even order, cf. [9]. A Seminar Bourbaki exposé of Hales [20]
reports on the current state of the art of large formal proofs.

The book under review forms part of a project to give a formal proof of the
Kepler Conjecture. Some statements in this formal proof will consist of inequalities
checked by computer, and certificates for the inequalities are provided as input to
the final formal proof. Preparing a proof script for a formal proof of the Kepler
Conjecture requires formalizing some parts of Euclidean geometry going beyond
Hilbert’s Grundlagen der Geometrie [30]. (Much of Hilbert’s work was itself for-
malized by Meikle and Fleuriot [36] in 2003.) Such a formalization, which includes
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some notions of point set topology, is described in work of J. Harrison [28]. A more
detailed description of this formal proof project is given in Hales et al. [25].

The goal of the book is to present a blueprint version of the planned formal proof:
A blueprint version extracts mathematical ideas and formalizes them in a structure
that is part way towards a formal proof. It serves as a mathematical scaffolding in
constructing the detailed formal proof, organized to facilitate conversion to a formal
proof script. The proof script is designed to be checked using the proof assistants
Isabelle [37] and HOL Light [35] and [27].

4. The book

The book is entirely mathematical, presenting proofs in a conventional manner.
It is self-contained and does not require any knowledge of the previous proof of the
Kepler Conjecture. The proofs presented are designed to facilitate their conversion
to a formal language. The book presents a history of the Kepler problem, details
of the blueprint version, and additionally proves some new results which will follow
from the formal proof.

An important feature is that this book formulates a new local density inequality.
Proof of optimality of this new inequality will constitute a second generation proof
of the Kepler Conjecture, independent of the previous proof. The new local density
inequality reduces to the following simple form. Let the spheres have radius 1, so
in a packing sphere centers are at distance at least 2 apart. Let V be the set of
sphere centers of a saturated sphere packing (“saturated” means no hole in the
packing is large enough to admit a new sphere; any packing is a subset of some
saturated packing). Consider the piecewise linear function L : [0,∞) → [0,∞)
having L(t) = 1 for t ≤ 1, L(t) = 0 for t ≥ 1.26 and linear interpolation between
these values. Using this function, associate to a sphere packing with centers at V
and a given center v the local quantity L(V,v) =

∑
w∈V �v L(||w−v||/2). The sum

is finite since it only involves sphere centers w at distance at most 2.52 from v.
The local density inequality actually assigns to a given sphere center v the “local
nearby volume” H(v) = 8m1 − 8m2L(V,v), where m1 ≈ 1.012,m2 ≈ 0.0254 are
explicit exact constants given in Definition 6.70, and the local inequality asserts
H(v) ≥ 4

√
2. This inequality is equivalent to the assertion that L(V,v) ≤ 12.

The new local inequality builds on recent work of C. Marchal [34] on the Kepler
Conjecture. Marchal associates to a given saturated packing of spheres a new
partition of space into cells of four kinds, plus possibly some unused extra volume.
(The cells are closed and overlap on volume zero sets.) The Marchal partition of
space is much simpler than the one used in the original inequality of Hales with
Ferguson. Marchal’s cells of type 1 are tetrahedra with vertices at four different
sphere centers. The Marchal cells of type 2 are tetrahedra with vertices at three
sphere centers plus one extra vertex strictly outside any sphere. The Marchal cells of
type 3 are unions of two truncated half-cones having two vertices at sphere centers.
The cells of type 4 are truncated half-cones with a vertex at a sphere center (and

edge length
√
2). The cells of each type touching a sphere center together cover the

entire sphere.
The Marchal approach has as a main ingredient a specific choice of weight func-

tion f(h) defined for h ≥ 0 which is compactly supported, which weights nearby
volume, and which is allowed to be negative on part of its domain. Associated to a
sphere center v is the set of all Marchal cells having v as a vertex. These cells fill
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out the whole solid angle at v, and each one of them will be assessed for volume
proportional to their solid angle at v, using the weight function. Then to prove the
Kepler Conjecture, two types of inequalities are required to be satisfied. The first
local inequality says that the assessed volume at each sphere center will total up
to at least the amount required by the Kepler Conjecture; it is actually expressed
in a negative form, that a certain amount of “given up” volume is not too large. It
takes the form that Lf (V,v) ≤ 12, where

Lf (V,v) =
∑

w∈V �v

f(||w − v||/2).

The second type of local inequality says that for each Marchal cell X the total
volume assessed to it by all the sphere centers at its vertices is at most the total
volume of the cell X. For type 1 and type 2 cells this inequality is expressed as
γ(X, f) ≥ 0, with

γ(X, f) := vol(X)− 2m1

π
tsol(X) +

8m2

π

∑
edge e

dih(X, e)f(
||e||
2

),

where ||e|| is the edge length. Here tsol(X) is the total solid angle of the sphere
center vertices (up to 4π), while dih(X, e) is the dihedral angle (up to π), and f(·)
is the weight function. Marchal proposes a function f(h) = M(h), which is positive

up to h+ = 1.3254 and is zero above h =
√
2, and presents evidence that both types

of inequalities above should hold for this function. This is Marchal’s proposed local
density inequality to prove the Kepler Conjecture, but the details he provides are
not complete to show it is optimal.

The formal proof blueprint presented in the book under review uses the Marchal
partition of space into cells, but reverses the numbering of cells; a Hales cell of type
k is a tetrahedron with vertices at k different sphere centers, and it corresponds to a
Marchal cell of type 5− k. It formulates and studies a different score function than
Marchal, taking f(h) to be the piecewise linear function L(h) mentioned above.
This function importantly has the cutoff L(h) = 0 for h ≥ h0 = 1.26 (smaller than
Marchal’s positivity cutoff 1.3254), which greatly reduces the number of cases to
be considered in the later analysis. It implies the upper bound N = 15 for the
number of nearby spheres. For Hales’s simplified function L(h), the second set
of Marchal inequalities on each cell, stating γ(X,L) ≥ 0, does not always hold.
The book presents in section 6.4 a method to deal with this difficulty. The bad
cases concern cells having an edge with ||e||/2 between [h−, h+] ≈ [1.23175, 1.3254],
which are termed critical edges in Definition 6.89. The bad cells are weighted and
grouped into clusters sharing a common critical edge; the weights for cells with
several critical edges are such that their contributions to different clusters add up
to 1. The replacement for the second inequality γ(X,L) ≥ 0 in this case is Theorem
6.93, which asserts nonnegativity for a sum of weighted γ(X,L) over clusters, after
an additional correction term is included. Lemma 6.92 handles other cases.

The proof of the first local inequality LL(V,v) ≤ 12 (stated as Lemma 6.95) is
the heart of the proof. It is to be proved by contradiction, embodied in Corollary
6.100, concerning a putative counterexample local configuration of sphere centers.
It reduces the proof to a finite-dimensional nonlinear optimization problem. The
book develops and formalizes ideas used in the earlier proof, to systematize finding
and discarding a large number of cases. It shows that a counterexample configu-
ration with LL(V,v) > 12 can be taken to have several extra desirable properties,
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called a contravening configuration (Lemma 8.16). These include, after fixing v = 0
and letting W denote the finite set of sphere centers having 2 ≤ ||w|| ≤ 2h0 = 2.52,
the properties: (i)W globally maximizes the function LL(W,v) over finite packings;
(ii) W has cardinality 13, 14, or 15; (iii) the projected points w = w/||w|| of W
onto the surface of the unit sphere, with pairs w1,w2 connected with geodesic arcs
whenever ||w1 −w2|| ≤ 2.52, cut the surface of the unit sphere into geodesic poly-
gons having all angles less than π. Property (iii) defines an abstract planar graph,
and the argument then classifies all such planar graphs with some extra structure,
called a hypermap. (The earlier proof of the Kepler Conjecture used graphs without
this extra structure; the use of hypermaps facilitates the arguments.) The proof
establishes that there is a finite list of such hypermaps and determines them all.
To each such hypermap it associates a family of linear programs to obtain upper
bounds on L(W ). The linear programs are now shown to imply the contradiction
that L(W,v) < 12, i.e., the linear program is infeasible. This can be certified by a
certificate of infeasibility (using dual variables) to be input into the proof checker.
The linear programs are constructed using many auxiliary geometric properties of
such sphere center configurations W , detailed in Chapter 7.

The book is divided into three parts. Part I of the book, Chapter 1, presents
a historical overview of work on the problem in Sections 1.1 to 1.5, finishing in
Section 1.6 with a sketch of the planned blueprint proof.

Part II, Chapters 2 to 5, gives geometric foundations for the proof, compris-
ing geometric and trigonometric equalities and inequalities, Chapter 4 treats the
structure of hypermaps. Chapter 5 introduces a notion of “fan” to further describe
hypermaps; this notion is different from that of “fan” in toric varieties. The book’s
foundations go beyond the treatment of Hilbert’s Grundlagen der Geometrie in the
treatment of Voronoi cells for individual sphere centers and of Delaunay triangula-
tions.

Part III, Chapters 6 to 8, presents a detailed description of the steps to establish
the new local density inequality. Section 6.3.2 gives an informal discussion of the
tradeoffs involved between the Voronoi cells and Delaunay simplices that motivate
the Marchal decomposition.

The book establishes new mathematical results. Section 8.6 proves the strong
Dodecahedral Conjecture of Bezdek [2], which asserts that the Voronoi cell having
the smallest surface area is the regular dodecahedron of unit radius. A corollary
is a new proof of the Dodecahedral Conjecture of Fejes-Tóth [4]. The methods of
this book also suffice to prove another conjecture of Fejes-Tóth [7], [8], stating that
any packing of space by unit balls such that each ball is touched by twelve others
necessarily consists of hexagonal layers; see Hales [19].

Note. In August 2014 Hales announced by email that the Flyspeck project has been
completed. A formal proof of the Kepler Conjecture based on a proof script based
on this blueprint has been accomplished, with two separate computer validations;
cf. Hales et al. [23].
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