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GRAPHS, VECTORS, AND MATRICES

DANIEL A. SPIELMAN

Abstract. This survey accompanies the Josiah Williard Gibbs Lecture that
I gave at the 2016 Joint Mathematics Meetings. It provides an introduction to
three topics: algebraic and spectral graph theory, the sparsification of graphs,
and the recent resolution of the Kadison–Singer Problem. The first and third
are connected by the second.

1. Introduction

Graphs are the quintessential objects of study in discrete mathematics. They
are usually described as a set of vertices, V , that are connected by a set of edges,
E, each of which is a pair of vertices. Graphs encode connections and are one
of the most commonly used representations of data. Mathematicians often define
graphs abstractly. For example, we define a path graph to be a graph with vertex
set V = {1, . . . , n} and E = {(i, i+ 1) : 1 ≤ i < n}. Or a number theorist might
consider a graph with V = {1, . . . , n} and E the set of pairs (i, j) for which i divides
j. The public is more familiar with social network graphs, in which each person
is a vertex and edges exist between pairs of people who are “friends”. Chemists
consider graphs connecting the atoms within a molecule. Physicists consider graphs
describing the interactions of molecules. The graphs that arise in one discipline may
have little in common with those that arise in another.

While we first learn to prove theorems about graphs through local arguments
and combinatorial manipulations, much of what I want to know about a graph
is revealed through the more continuous approach of algebraic graph theory. I
introduce this approach in Section 2 by defining the Laplacian matrices of graphs
and their associated quadratic forms, and by showing how they help us draw graphs
and understand their structure. When we introduce graphs to students, we often
do so through pictures. We draw the vertices as little circles and the edges as lines
or curves connecting the circles representing their endpoints. While we obtain the
same graph wherever we put the circles, some drawings reveal the structure of the
graph much better than others. For example, consider the two drawings in Figure
1. They both represent the same graph, but the second reveals its structure much
better than the first. It was drawn using two eigenvectors of the Laplacian matrix
of the graph, in a way explained in Section 2.2.

In Section 3, we use Laplacian matrices to associate a vector with each edge
of a graph. We then explain how every collection of vectors can be approximated
by a rescaling of a small subset of those vectors, and use this association to prove
that every graph can be approximated by a graph having few edges. Our notion
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Figure 1. An arbitrary drawing of a graph, and a spectral draw-
ing of that graph.

of approximation is algebraic: we say that one graph approximates another if their
Laplacian matrices are similar.

The statement that every collection of vectors can be approximated by a subset of
those vectors has a very close resemblance to a conjecture in discrepancy theory that
Weaver [Wea04] proved would affirmatively resolve the Kadison–Singer Problem.
In Section 4 we explain Weaver’s conjecture and introduce some of the techniques
that were recently used to prove it.

2. The graph Laplacian

We now define the Laplacian quadratic form and the Laplacian matrix associated
with a weighted, undirected graph. Given an undirected graph G with vertex set V ,
edge set E, and positive edge weights, wa,b for (a, b) ∈ E, we define the Laplacian
quadratic form associated with G to be the function from x ∈ R

V to real numbers
given by

qG(x)
def
=

∑
(a,b)∈E

wa,b(x(a)− x(b))2.

In this expression, the terms a and b index vertices and the unordered pair (a, b)
indexes an edge.

The Laplacian matrix of G, denoted LG, is the symmetric matrix such that

qG(x) = xTLGx.

When reading these expressions, one should keep in mind that the entries of x are
indexed by vertices, and so the rows and columns of LG are also indexed by vertices.
We will often think of x as being a function from V to R.

2.1. Physical models. The graph Laplacian has many natural physical interpre-
tations, and these provide some of the motivations for its use. For example, we
could imagine that each edge of the graph is a resistor in an electrical network.
As a large weight represents a strong connection, it should correspond to a low
resistance. Thus, we view an edge (a, b) of weight wa,b as a resistor connecting a to
b of resistance 1/wa,b. If we then impose voltages x(a) and x(b) at vertices a and
b, a current of wa,b(x(a)− x(b)) will flow across edge (a, b) and result in an energy
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dissipation wa,b(x(a)−x(b))2. If x provides the voltage at every vertex, then qG(x)
is the sum of the energy dissipation over all resistors. In this way, the electrical
properties of the resistor network are described by the graph Laplacian.

One of the most useful measurements in a resistor network is the effective resis-
tance between two vertices. This is the resistance between the two vertices when we
view the entire network as one complex resistor. One way to measure the effective
resistance between vertices a and b is to fix the voltage of vertex a to 1, fix the
voltage of vertex b to 0, and then measure how much current flows from a to b. The
effective resistance is the reciprocal of the current flow. Physics tells us that the
electrical current will minimize energy dissipation. Thus, the induced voltage at
every vertex will be given by the vector x that minimizes qG(x) subject to x(a) = 1
and x(b) = 0. One can compute this minimum by finding the vector at which the
partial derivatives of qG(x) are zero. This amounts to solving a system of linear
equations in the submatrix of LG containing the rows and columns that are not in-
dexed by a or b. The effective resistance between vertices is known to be a distance
[KR93], and it is small when there are many distinct short paths connecting them.

Another useful physical model for a network is obtained by thinking of each
edge (a, b) as being a spring with spring constant wa,b. The potential energy in a
spring with constant wa,b that has been stretched to length l is wa,bl

2/2. Thus, the
potential energy in the spring network corresponding to the graph G when each
vertex a is fixed to location x(a) ∈ R is qG(x)/2. However, we are not restricted to
fixing vertices to real numbers; we can locate them in the plane! If we fix vertex a
to the point (x(a), y(a)), then the potential energy in the spring network is

1

2

∑
(a,b)∈E

wa,b

∥∥∥∥
(
x(a)
y(a)

)
−

(
x(b)
y(b)

)∥∥∥∥
2

=
1

2
(qG(x) + qG(y)) .

In an amazing paper called “How to Draw a Graph”, Tutte [Tut63] proved that we
can use these spring networks to obtain planar drawings of planar graphs!

A planar graph is one that can be drawn in the plane without crossing edges.
That is, every vertex can be mapped to a distinct point in the plane and every edge
can be drawn as a continuous curve connecting the points to which its vertices are
mapped in such a way that the curves representing distinct edges do not intersect.
If we remove the points representing vertices and the curves representing edges
from the plane, we are left with planar regions called faces. Faces are typically
bounded by cycles in the graph. Tutte suggests drawing a planar graph by fixing
the locations of the vertices defining one face to the corners of a convex polygon,
treating the graph as a spring network, and then placing the other vertices at the
positions that minimize the potential energy of the network. This is exactly the
position to which physics tells us they should settle, and it is the position in which
every vertex that is not fixed is located at the center of gravity of its neighbors.
Tutte proves that if the graph is planar and 3-connected,1 then this provides a
planar drawing of the graph. We provide an example of such a drawing in Figure
2.

1A graph is 3-connected if there is no set of two vertices whose removal disconnects the graph.
The boundaries of faces in 3-connected graphs are always cycles. Graphs that are not 3-connected
are the natural obstructions to this theorem: if there are vertices a and b whose removal disconnects
a set of vertices S from the rest of the graph, then all of the vertices in S will lie on a line from a
to b in a spring embedding of the graph formed by fixing a face that does not intersect S.
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Figure 2. A drawing of a planar graph by a spring embedding.
The locations of the four vertices at the corners of the square were
fixed. The locations of every other vertex were chosen to minimize
the potential energy of the spring network. The edges are drawn
as straight lines.

We emphasize that this drawing was produced using only the knowledge of the
connections between the vertices in the graph and does not exploit any geometric
information. I find it amazing that the mathematics of spring networks realize our
human desire to draw graphs without crossing edges.

2.2. Spectral graph drawing. A natural way to introduce spectral graph theory
would be to present theorems relating combinatorial properties of a graph to the
eigenvalues of its Laplacian matrix. Instead, I will try to build your intuition for
why eigenvalues and eigenvectors of matrices associated with graphs should contain
combinatorial information by showing how they can be used to produce nice pictures
of graphs. I will also explain Cheeger’s inequality, which relates the eigenvalues of
the Laplacian to the sizes of boundaries of sets of vertices in the graph. For more
theorems, I recommend the books of Biggs [Big74], Chung [Chu97], Godsil [God93],
and Godsil and Royle [GR01].

We begin by considering the problem of drawing a graph on the line. Given a
graph with n vertices, we might want to assign each vertex a number in {1, . . . , n}.
There are many reasons we might wish to do this: the first is that we need to
choose some ordering on the vertices if we are going to display matrices associated
with the graph. Many graph computations require an ordering of the vertices, and
these often perform better if the pairs of vertices connected by edges appear close
to each other. We will consider the motivation of drawing the graph. In this case,
we will map the vertices of the graph to the corners of a regular n-gon. The picture
we draw this way will better reveal the structure of the graph if the edges connect
vertices that are close together.

For example, Figure 3 is a drawing of part of my social network from Facebook.
Each vertex represents one of my friends, and I have drawn edges between people
who are friends with each other.
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Figure 3. A drawing of a graph using one eigenvector wrapped
around an n-gon.

An attempt to draw the best picture of this form leads us to a natural compu-
tational problem: assign distinct integers in {1, . . . , n} to the vertices of a graph so
that the edges are as short as possible. Unfortunately, we do not know of any way
of formalizing this problem that leads to something we can compute efficiently. For
example, the problems of minimizing the maximum edge length or the sum of the
edge lengths are NP-complete [Pap76].

Instead, we will consider a relaxation of this problem suggested by Hall [Hal70].
In this relaxation, we will map each vertex of the graph to a real number. I will
view this mapping as a function x : V → R. Hall suggested minimizing the sum of
the squares of the lengths of the edges: qG(x). To make the minimum unique, we
need to impose two constraints. The first,

(1)
∑
a∈V

x(a) = 0,

fixes the average of the numbers. The second,

(2)
∑
a∈V

x(a)2 = 1,

fixes the scale.
The Courant–Fischer characterization of the eigenvalues of a symmetric matrix

tells us that the minimum of qG(x) subject to (1) and (2) is achieved by an eigen-
vector of the second-smallest eigenvalue of the Laplacian matrix of the graph. Let
λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of LG, and let v1, . . . , vn be corresponding
eigenvectors, normalized to have norm 1. As LG is symmetric, we may assume that
the eigenvectors are orthogonal. The Courant–Fischer theorem tells us that

λi = min
x:vT

j x=0 for 1 ≤ j < i

xTLGx

xTx
,

and that vi is a vector on which this minimum is achieved. The smallest eigenvalue
of a Laplacian matrix is 0, and the corresponding eigenvectors are the constant
vectors. So, the condition (1) is equivalent to vT1 x = 0. If G is connected, then
λ2 > 0. We usually ignore the first eigenvalue of 0, and call λ2, . . . , λn the eigen-
values of G.
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Provided that v2(a) �= v2(b) for all distinct vertices a and b, we can use v2 to
obtain an ordering on the vertices. I drew the picture in Figure 3 by computing v2,
using it to obtain an ordering of the vertices (from low to high) and then placing
the vertices at the corners of the regular n-gon in this order. For a proof that this
procedure produces the “right” ordering for certain graphs, I refer the reader to
[ABH98].

To obtain more flexibility in how we draw the graph, we can assign every vertex a
pair of real numbers: x and y coordinates in the plane. In this case, Hall suggested
minimizing ∑

(a,b)∈E

∥∥∥∥
(
x(a)
y(a)

)
−

(
x(b)
y(b)

)∥∥∥∥2

= qG(x) + qG(y)

subject to

(3)
∑
a

x(a) = 0,
∑
a

y(a) = 0,

(4)
∑
a

x(a)2 = 1,
∑
a

y(a)2 = 1,

and

(5)
∑
a

x(a)y(a) = 0.

Conditions (3) and (4) are the same as those we imposed when we drew the graph
in the line. Condition (5) forces x to be different from y. If we did not include it,
we would obtain the solution x = y = v2. With this condition, Hall proves that the
solutions to this problem are given by x = v2, y = v3, and rotations of this solution.
This is how we chose the coordinates of the vertices in the right-hand drawing in
Figure 1. The edges were then drawn as straight lines. This procedure does not
work with every graph, but it often provides a good start. One can often produce a
nice drawing of a graph by massaging the coordinates provided by the eigenvectors.
In Figure 4 we give one more intriguing example of this phenomenon. The image
on the left was generated by sampling 500 points at random in the unit square,
computing their Delaunay triangulation, and drawing the edges of the triangles.
We form a graph by taking the union of the edges in the triangles. The image on
the right is the spectral drawing of this graph. While it is not a planar drawing, the

Figure 4. A Delaunay triangulation of random points in the
square and a spectral drawing of the resulting graph.
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violations of planarity only appear on the boundary. This is a robust experimental
observation, and I would love to find a theorem that explains it.

Unfortunately, many of the graphs that we encounter cannot be drawn nicely. If
you try to formalize the notion of a “nice” drawing, you will probably require most
of the edges to be short and that the vertices not be too closely packed together.
A nice drawing should reveal some structure of a graph. A random graph will not
have structure, and so should not have a nice drawing. In fact, many of the graphs
we encounter in real life, such as large social network graphs, cannot be drawn
nicely. If λ2 is large, say much larger than 10/

√
n, then there is no way to draw the

graph in the plane with most of the edges short and the vertices well distributed.
I often ask my students to make this statement formal and prove it.

2.3. Boundaries of sets. Another way to understand the structure of a graph is
to divide it into pieces. We usually do this by partitioning the vertices into sets
so that most of the edges of the graph connect vertices in the same set. Such a
partition of a social network provides a division of the people in the network into
communities. Conversely, we can try to identify communities by searching for the
best partitions. If we just want to identify one community, then we may just focus
on that set of vertices and ignore how the partition divides the others.

Given a subset of vertices S ⊂ V , the boundary of S, written ∂S, is defined to
be the set of edges with exactly one endpoint in S: {(a, b) ∈ E : a ∈ S, b �∈ S}. The
weight of the boundary of S is the sum of the weights of these edges. The Laplacian
allows us to measure the weights of the boundaries of sets of vertices. If χS is the
characteristic vector of S (1 inside S and 0 outside), then the value of the Laplacian
quadratic form in χS measures the size of the boundary

χT
SLGχS =

∑
(a,b)∈E:a∈S,b�∈S

wa,b.

For a graph in which every edge has weight 1, this is |∂S|.
We think of S as providing a good community if its boundary is small relative

to the size of S. We quantify this by measuring the cut ratio of S, written

θ(S) =
|∂S|
|S| .

We should make one correction to this definition: if |S| > |V | /2, then we should
think of the complement of S as providing the community instead of S, and then
divide by |V | − |S| instead.

By plugging the characteristic vector of S into the Laplacian quadratic form and
by treating eigenvalues as the solution of optimization problems as we did in the
previous section, one can easily show that

(6) θ(S)
def
=

|∂S|
min (|S| , |V | − |S|) ≥ λ2/2,

where λ2 is the second-smallest eigenvalue of LG. To see this, consider the vector

x
def
= χS − |S| / |V |. The vector x is orthogonal to the constant vectors, and so the

Courant–Fischer theorem tells us that

λ2 ≤ xTLGx

xTx
.
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Inequality (6) then follows from the observations that

xTLGx = χT
SLGχS

and

xTx ≥ min (|S| , |V | − |S|) /2.
This provides a way of proving that a graph for which λ2 is large does not have a
nice drawing: every graph that has a nice drawing has a subset of vertices S for
which θ(S) is small.

This result is the motivation for spectral partitioning heuristics that use eigen-
vectors of matrices associated with graphs to find sets of vertices of low cut ratio.
The most basic of these considers sets of vertices of the form

St
def
= {a : v2(a) ≤ t} ,

where v2 is the eigenvector of λ2 and t is a threshold that determines the size of
the set. Discrete analogs of Cheeger’s inequality [Che70,Dod84,AM85,LS88,SJ89,
Var85] imply that if a graph has a set of small cut ratio, then one can find it this
way. If we choose t to minimize θ(St), then we obtain a set that satisfies

θ(St) ≤
√
2dmaxλ2,

where dmax is the maximum number of edges attached to a vertex in G. Cleaner
bounds that do not involve terms like dmax can be obtained if we count edges by
their weights, count vertices by the sum of the weights of edges attached to them,
and instead consider the eigenvalues of the normalized Laplacian, D−1/2LGD

−1/2,
where D is the diagonal matrix of weighted degrees of vertices.

I study and teach spectral graph theory for three reasons. The first is that it
contains many beautiful theorems. The second is that we can compute good ap-
proximations of the eigenvalues and eigenvectors of a Laplacian matrix very quickly
[ST14]. Thus, they provide computationally tractable analyses and can serve as the
basis of many useful heuristics. The third is that they have many generalizations:
semidefinite programming generalizes optimization with eigenvalues, and eigenvec-
tors are just one of many objects that may be computed as fixed points of natural
iterative procedures.

3. Sparsification

We will say that a graph G is an ε-approximation of a graph H with the same
vertex set if for all x ∈ R

V ,

(7) (1 + ε)qH(x) ≥ qG(x) ≥ (1 + ε)−1qH(x).

We may express this condition in a linear algebraic manner by introducing the
notation A � B for symmetric matrices A and B to indicate that xTAx ≥ xTBx
for all vectors x. This is equivalent to saying that A−B had no negative eigenvalues.
That is, it is a positive semidefinite matrix. With this notation, (7) becomes

(1 + ε)LH � LG � (1 + ε)−1LH .

For small ε this is a very strong condition. Among other things, it implies that LG

and LH have approximately the same eigenvalues, that the weight of the boundary
of every set of vertices is approximately the same in G and H, that the effective
resistance between every pair of vertices is approximately the same in G and H,
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and that linear equations in LG have approximately the same solutions as linear
equations in LH . The last statement can be expressed algebraically as

(1 + ε)L+
H � L+

G � (1 + ε)−1L+
H ,

where L+
G denotes the pseudo-inverse of LG: an operator that acts as the inverse

of LG on its span. In terms of numerical linear algebra, this says that LH is a
good preconditioner for LG. For more implications of this approximation, I refer
the reader to [ST11,BSST13].

A sparse graph is a graph in which the number of edges is a small multiple of the
number of vertices. Every graph may be approximated by a sparse graph, where the
number of edges in the sparse graph depends on the quality of the approximation.
The strongest result of this form that we presently know comes from the following
theorem of [BSS12].

Theorem 3.1. For every weighted graph G on n vertices and every ε > 0, there is
a weighted graph H having at most

⌈
n/ε2

⌉
edges so that

(1 + ε)2LH � LG � (1− ε)2LH .

The proof of this theorem is purely linear algebraic and relies on the association
of vectors with the edges of a graph. We define the vector associated with edge
(a, b) to be the vector

ua,b
def
= ea − eb,

where e is the elementary unit vector in direction a. That is, ua,b has 1 in position
a, −1 in position b, and is zero everywhere else. For a vector x ∈ R

V ,

x(a)− x(b) = uT
a,bx,

and thus

(x(a)− x(b))2 = (uT
a,bx)

2 = xT (ua,bu
T
a,b)x.

So, we can write LG as ∑
(a,b)∈E

wa,bua,bu
T
a,b.

In [BSS12], we derive Theorem 3.1 as a consequence of the following theorem about
collections of vectors.

Theorem 3.2. Let u1, . . . , um be vectors in R
n, and let ε > 0. Then, there exists

a subset S ⊆ {1, . . . ,m} of size at most
⌈
n/ε2

⌉
and real numbers si > 0 so that for

A =

m∑
i=1

uiu
T
i and B =

∑
i∈S

siuiu
T
i ,

(1 + ε)2B � A � (1− ε)2B.

When we use Theorem 3.2 to prove Theorem 3.1, we obtain a graph H whose
edges are a subset of the edges of G, although with different weights. Theorem 3.1
would be interesting even if the edges used in H were not a subset of the edges of
G. However, Theorem 3.2 would be uninteresting if we did not require the vectors
from which we form B to be a subset of those used to form A, as one can always
use the eigenvector decomposition to write a positive semidefinite matrix as a sum
of outer products of n vectors.
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3.1. Complete graphs and expanders. Even the problem of sparsifying the
complete graph is interesting. Recall that the complete graph on n vertices is the
graph with every possible edge. If K is the complete graph on n vertices and x is
orthogonal to the constant vectors, then

qK(x) = n ‖x‖2 .

So, a sparse approximation of the complete graph is a graph whose eigenvalues are
all close to n. Sparse graphs whose eigenvalues are concentrated in this way are
called expander graphs (see [HLW06]) and they have proved incredibly useful in
computer science and combinatorics. They are called expanders because all sets
of vertices in these graphs have unusually large boundaries. Most constructions
of expander graphs produce regular, unweighted graphs. The Ramanujan graphs,
first constructed by Margulis [Mar88] and Lubotzky, Phillips and Sarnak [LPS88],
are the best possible unweighted, regular approximations of complete graphs: they
are infinite families of d-regular graphs with all eigenvalues differing from d by at
most 2

√
d− 1. If we assign the weight n/d to every edge, then all their eigenvalues

are close to n. Alon and Boppana (see [Nil91]) prove that no regular unweighted
graph approximates a complete graph significantly better than the Ramanujan
graphs: they prove that for every ε > 0, every sufficiently large d-regular graph has
λ2 ≤ d − 2

√
d− 1 + ε. We do not know if there are better approximations of the

complete graph by weighted or irregular graphs of the same number of edges. We
conjecture that there are not. See [BSS12, Proposition 4.2] for some bounds.

Theorem 3.1 says that every graph can be approximated almost as well as Ra-
manujan graphs approximate complete graphs: less than twice as many edges are
required to obtain the same quality of approximation. We do not know if better
approximations of arbitrary graphs exist.

A natural way to try to form a sparse approximation of the complete graph is
to choose a random subset of its edges. A good approximation is obtained if one
chooses O(n logn) edges at random. However, the “Coupon Collector” phenomenon
tells us that choosing fewer edges does not work: if one chooses fewer than n lnn
edges, then the resulting random graph is likely to have a vertex of degree zero.
This will result in it having λ2 = 0, and so it will be a poor approximation of the
complete graph. Vertices of the wrong degree are essentially the only obstacle to
approximating the complete graph by a random graph. Friedman [Fri08] proved
that if we choose a random graph in which every vertex has degree d, then it is
probably very close to being a Ramanujan graph.

In [SS11] we show that, by carefully choosing the probabilities with which we
sample edges, we can use a similar random sampling procedure to sparsify any
graph. We include edge (a, b) in H with probability proportional to

qa,b
def
= wa,bu

T
a,bL

+
Gua,b,

where L+
G is the pseudo-inverse of LG. L+

Gua,b is the vector x of sum zero so that

LGx = ua,b. The quantity uT
a,bL

+
Gua,b is the effective resistance of edge (a, b),

which we described in Section 2.1. The sum of the quantities qa,b may be shown
to equal n − 1. We decide whether or not to include each edge (a, b) in the graph
independently, including it with probability

pa,b
def
= min(C(logn)qa,b/ε

2, 1),
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where C is some absolute constant. If we do include edge (a, b), then we increase
its weight by dividing it by pa,b. Thus, if we view not including an edge as setting
its weight to zero, then the expected weight of every edge in H is its original weight
in G. This implies that the expectation of the Laplacian of H is the Laplacian of
G:

ELH =
∑

(a,b)∈E

pa,b

(
wa,b

pa,b
ua,bu

T
a,b

)
=

∑
(a,b)∈E

wa,bua,bu
T
a,b = LG.

This procedure will result in a graph with an expected number of edges equal
to O(n logn/ε2). One can use recent concentration bounds for random matrices,
such as [Tro12, Theorem 1.1], to prove that the resulting Laplacian matrix is an
ε approximation of the original. It is worth pointing out that Tropp’s theorem
has nothing to do with graphs; it is just a statement about a sum of random
matrices. The original analysis of this procedure in [SS11] instead used Rudelson’s
concentration bounds [Rud99] to analyze a variant of this procedure that sampled
edges with replacement.

Both analyses begin by considering a convenient rescaling of the problem. One
can show that if M is nonsingular, then

A � B ⇐⇒ MAMT � MBMT .

So, we may prove that LH is an ε-approximation of LG by proving that

(1 + ε)L
+/2
G LHL

+/2
G � Π � (1 + ε)−1L

+/2
G LHL

+/2
G ,

where

Π = L
+/2
G LGL

+/2
G

is the projection onto the span of LG, and should be thought of as the identity, and
L+/2 is the square root of the pseudo-inverse of LG. Under this rescaling we are
led to consider the vectors

va,b
def
= w

1/2
a,b L

+/2
G ua,b,

and to seek a subset S and scaling factors sa,b so that∑
(a,b)∈S

sa,bva,bv
T
a,b ≈ε Π.

These vectors va,b are special in that, within their span, the sum of their outer
products is the identity∑

va,bv
T
a,b =

∑
wa,bL

+/2
G ua,bu

T
a,bL

+/2
G =

∑
wa,bL

+/2
G LGL

+/2
G = Π.

The proof of Theorem 3.2 operates on the same normalization but has a very
different flavor: it analyzes an algorithmic procedure that adds vectors to S one by
one. The proof of Theorem 3.2 does not provide any control of the scaling factors
si. They are proved to exist, and a procedure is given for computing them. This is
rather different from the scaling given by the random sampling procedure, in which
the scaling factors are the reciprocals of the probabilities with which edges are
included. As we will explain in the next section, proving a variant of Theorem 3.2
with the right scaling factors is almost equivalent to proving Weaver’s conjecture
KS2.
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4. Weaver’s conjecture and the Kadison–Singer Problem

Weaver’s conjecture KS2 concerns a collection of complex vectors u1, . . . , um

such that

(8)
m∑
i=1

uiu
∗
i = I.

As these vectors are complex, we multiply each by its conjugate transpose. But,
for most purposes, it suffices to consider the outer products of real vectors with
their transposes. Collections of vectors that satisfy (8) are said to be in isotropic
position, and are also called a Parseval frame. The sum in this expression is also
known as a decomposition of the identity.

We would like to know conditions under which a set of vectors in isotropic posi-
tion is guaranteed to contain a subset whose sum of outer products approximates
half the identity. If ∑

i∈S

uiu
∗
i

is an ε-approximation of I/2, then all of the eigenvalues of the matrix in this sum
must lie between 1/2(1 + ε) and (1 + ε)/2. The most obvious obstacle to this
happening is if one of the vectors ui has large norm. For example, if ui has norm
1, then the sum will have an eigenvalue of 1 if i ∈ S and an eigenvalue of 0 if i �∈ S.
Weaver conjectured [Wea04] that vectors of large norm are the only obstacle.

Conjecture 4.1 ([Wea04]). There are positive constants α and ε so that for every
collection of vectors u1, . . . , um in isotropic position such that ‖ui‖ ≤ α for all i,
there exists a subset S ⊆ {1, . . . ,m} so that all eigenvalues of∑

i∈S

uiu
∗
i

lie between ε and 1− ε.

Using results of Akemann and Anderson [AA91], Weaver proved that the truth
of this conjecture would imply a positive resolution to the Kadison–Singer Problem
[KS59].

A natural approach to proving this conjecture would be to select the subset S
uniformly at random. One can use Tropp’s matrix concentration bound [Tro12,
Theorem 1.1] to prove that this would work if every vector ui had norm at most
c/
√
log n, where n is the dimension of the space in which the vectors lie and c is

some constant. However, Conjecture 4.1 requires a constant bound on the norms
of the vectors that is independent of the dimension. With only a constant bound
on the norms of the vectors, we can form collections of vectors for which random
subsets almost always fail. For example, consider the collection of vectors that
contains k vectors of form (1/k)ei, for each elementary unit vector ei. If k is held
constant while the dimension grows and one chooses a subset S of the vectors at
random, then there will probably be an i so that the set S contains all of the
vectors in direction ei and there will probably be a j so that S contains none of
the vectors in direction ej . Either of these conditions would prevent the sum of the
outer products of the vectors in S from approximating half the identity.

Of course, it would suffice to show that a random set S works with some nonzero
probability. Examples of such arguments appear in [BFU94] and [FM99], both of
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which show that it is possible to partition the edges of an expander graph into
two disjoint expander graphs. To see how this problem is related, observe that the
vectors associated with the edges of an expander are very close to being in isotropic
position. One can bring them into isotropic position by projecting orthogonally to
the constant vectors, and then applying a linear transformation that only changes
the lengths of the vectors slightly. This produces a set of vectors in isotropic position
that all have approximately the same norm. Frieze and Malloy use the Lovász Local
Lemma to prove that there is a nonzero probability that the vectors in a random
subset approximate half the identity.

Theorem 3.2 looks like it comes close to proving Conjecture 4.1. It seems that
the most difficult cases of the conjecture should involve vectors that are as large
as possible, and so they should all have the same norm. If we set ε so that

⌈
n/ε2

⌉
equals m/2, we would hope that the si would all be equal to or close to 2. This
is what the random sampling procedure suggests, it is what we expected would be
true, and it would imply Conjecture 4.1. Unfortunately, the proof of Theorem 3.2
does not provide any such guarantees about the scaling factors si.

In [MSS15b] we use a very different argument to prove the following theorem,
which implies a strong version of Conjecture 4.1. This in turn provides a positive
resolution of the Kadison–Singer Problem.

Theorem 4.2. For every constant α > 0 and every collection of vectors u1, . . . , um

in isotropic position such that ‖ui‖ ≤ α for all i, there exists a subset S ⊆
{1, . . . ,m} so that all eigenvalues of ∑

i∈S

uiu
∗
i

lie between 1/2− β and 1/2 + β for

β =
√
2α1/4 + α1/2.

The next section explains the main technique used in the proof of this theorem.

4.1. Interlacing families of polynomials. Given a subset S ⊆ {1, . . . ,m}, let
pS(z) be the characteristic polynomial of the matrix∑

i∈S

uiu
∗
i .

Theorem 4.2 requires a set S such that all the roots of pS(z) are between 1/2 − β
and 1/2 + β. Let S̄ denote the complement of S. As the vectors are in isotropic
position, the roots of pS̄(z) are one minus the roots of pS(z). So, it suffices to find
a set S so that all of the roots of both pS(z) and pS̄(z) are at most 1/2 + β. We
define

qS(z)
def
= pS(z)pS̄(z),

and seek a set S so that all of the roots of qS(z) are at most 1/2 + β.
We do this by considering the expected polynomial obtained by choosing S

uniformly at random:

Q0(z)
def
= E

S
qS(z).
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We prove

1. all of the roots of Q0(z) are real,
2. all of the roots of Q0(z) are less than 1/2 + β, and
3. there is a set S so that the largest root of qS(z) is at most the largest root

of Q0(z).

The first of these statements is somewhat surprising. Even though each polynomial
qS(z) is real rooted, the average of real rooted polynomials does not need to be
real rooted. It becomes less surprising if you are aware of the large family of
combinatorially defined polynomials that turn out to be real rooted, such as the
matching polynomials of graphs [HL72,God81].

The second statement is surprising because we have seen that there are sets of
vectors in isotropic position for which almost every set S will produce a polynomial
qS(z) whose largest root is 1. Substantial cancellation is required for the sum of
these polynomials to have all roots close to 1/2.

The most surprising step in this argument is probably the last one. There is no
particular reason to expect an upper bound on the roots of a sum of polynomials
to provide an upper bound on the roots of a particular polynomial in the sum.
It happens in this case because the polynomials that we are averaging form an
interlacing family. To define this, we recall that two degree d polynomials p1(z) and
p2(z) are said to have a common interlacing if there exist real numbers r0 ≤ · · · ≤ rd
so that for every 1 ≤ i ≤ d both polynomials p1(z) and p2(z) have exactly one root
in the interval [ri−1, ri] (carefully treating roots of multiplicity greater than one).
The terminology comes from the fact that the roots of both p1(z) and p2(z) interlace
those of the polynomial

∏
(z− ri). The following fact about polynomials that have

a common interlacing is easy to prove.

Proposition 4.3 ([MSS15a, Lemma 4.2]). If q1(z) and q2(z) are polynomials of
the same degree with positive leading coefficient that have a common interlacing,
then the largest root of q1(z) or q2(z) is at most the largest root of q1(z) + q2(z).

We cannot exploit this proposition directly, as the polynomials qS(z) do not all
have common interlacings. Instead, for each 0 ≤ k ≤ n and each R ⊆ {1, . . . , k},
we define the polynomials

Qk,R(z)
def
= E

T⊆{k+1,...,m}
qR∪T (z).

That is, Qk,R(z) is the expectation of qS(z) when we choose S at uniformly at
random subject to S ∩ {1, . . . , k} = R. We also prove that for every k and R ⊆
{1, . . . , k}, the polynomials

Qk+1,R(z) and Qk+1,R∪{k+1}(z)

have a common interlacing. We define sets of polynomials qS(z) that satisfy a
condition like this to be an interlacing family. This condition implies that for every

k and R ⊆ {1, . . . , k}, there is a set R̂ ⊆ {1, . . . , k + 1} so that the largest root of
Qk+1, ̂R(z) is at most the largest root of Qk,R(z). An inductive argument then tells

us that there is a set S so that the largest root of Qn,S(z) is at most the largest
root of Q0,∅(z). As Qn,S(z) = qS(z) and Q0,∅(z) = Q0(z), the set S is the one that
we require.
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5. Conclusions

There are many interesting connections between these topics that I have not
been able to cover, such as the relation between the Kadison–Singer Problem and
the construction of Ramanujan graphs [MSS15a,MSS15c]. To learn more about
related topics, I suggest the survey [MSS14] or the blog posts of Srivastava [Sri13]
and Tao [Tao13]. To learn more about sparsification, I recommend the surveys
[BSST13, Nao12]. For another perspective on the solution of the Kadison–Singer
Problem, I suggest [Brä14]. I maintain a web page [Spi] at which I keep pointers
to the latest developments in sparsification.
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