What is Discrete Mathematics and how should we teach it?

In the past 25 years the réle of discrete mathematics has become in-
creasingly important. The number of fields in which discrete mathemat-
ics is applied in some way also keeps increasing. It has been argued that
for some areas, where mathematical knowledge is necessary, one should
replace the standard calculus course by discrete mathematics. Although
I feel that everybody should know some calculus, it is certainly true
that knowledge of techniques from discrete mathematics is often just as
useful. A number of years ago this idea of replacing calculus by parts of
mathematics that were more relevant to the other part of the program
was pushed strongly by computer science departments in the USA. This
led to a stream of books on “Discrete Mathematics for Computer Sci-
entists”, most of which give the impression that discrete mathematics
is the union of all subjects in mathematics that are useful for computer
scientists but not part of calculus. One finds logic and set theory as part
of the hodge podge of subjects in these books. My opinion is that this is
not discrete mathematics at alll Of course logic, set theory, etc. are very
useful for students of computer science but a course in these subjects
should be given some other name. ' risi

What is discrete mathematics? It is that part of mathematics that
deals with with discrete structures. Usually the objects that are studied
are finite but of course I also include infinite graphs, the integers, (and
other locally finite structures). Essentially the subject includes combina-
torial theory, elementary number theory, finite groups, finite geometries,
finite fields, and some newer areas such as coding theory.

It is my impression that many courses that do deserve the name dis-
crete mathematics are taught in a way that leaves students completely
baffled. They have the impression that problems in discrete mathematics
are solved by ingenious tricks and that any new problem that they will
encounter requires them to invent the appropriate new trick. Compare
this to a calculus course, where one teaches methods such as differen-
tiation, integration, solving linear differential equations, etc.and subse-
quently applies these methods in several different situations. A course
in discrete mathematics should be similar! One should treat objects that
appear in many places, sometimes disguised; methods of representation
should be used in several different situations; ideas that reappear regu-
larly in practice should also reappear regularly in the course; fools that
play an important réle in discrete mathematics should become part of



the skills of the students. To give an idea I mention several examples of
each of these topics (not a complete list) :

(1) Objects : graphs, lattices, geometries, designs, codes, coverings,
partitions, systems of sets, matroids; :

(2) Representations : addressing schemes, coding, (0,1)-matrices,
(0,1)-sequences, graphs, diagrams, pictures, subsets of lattices;

(3) Ideas : counting techniques, probabilistic techniques, (non-exist-
ence methods, construction techniques, unification (association
schemes, matroids), optimization methods, max-flow, search tech-
niques, symmetry;

(4) Tools : algebra (matrix theory, finite groups, finite fields, group
rings), elementary number theory, permutation groups, geometry,
analysis (power series, Lagrange inversion).

The course should be structured as a multipartite graph with subsets of
(1) to (4) as independent sets and as many edges as possible. Here an
edge from say “graph”to “(0,1)-matrices”means that this representation
1s used to describe graphs but also also used to derive properties of
graphs or to prove theorems about them.

The following situation can (should) occur. It has didactical value.
One wishes to prove a certain theorem' about, say, designs and decides
to use (0,1)-matrices as representation. The rows of the (0,1)-matrix
can also be interpreted as words in a code. This leads to a formulation
of the theorem, that is to be proved, in another terminology. This other
theorem may have already occurred in the course or it could be much
easier to see how to prove it. One can also prove a “new”theorem about
some combinatorial object and in retrospect observe that if this object
had been represented in the appropriate way, one would have realized
that the theorem had actually occurred earlier in some other form.

If the instructor decides to take the tool “algebra”as a central item
in his course, then the ideas that he uses, for example eigenvalues of
matrices, should be applied for many different purposes, such as nonex-
istence theorems for strongly regular graphs, properties of block designs,
theorems in finite geometry. Similarly, the idea of using several small
combinatorial objects to construct one large one should reappear (Latin
squares, Hadamard matrices, block designs, etc.).

A course taught in Eindhoven for several years started with a chapter
on finite fields and then chose a number of objects from combinatorics
(Latin squares, Hadamard matrices, finite geometries, block designs,
error-correcting codes) in each of which finite fields were heavily used to
construct the objects.



A number of ideas that I use will be treated below as examples. First
however, 1 mention a principle that was suggested by A.Revuz at the
meeting on “How to teach mathematics so as to be useful”held in Utrecht
in 1967. I have used it ever since with much success. Discrete math-
ematics is particularly suited for this principle. The idea is to let the
students work on problems (usually in groups of two or three), solutions
to be handed in as homework, and to teach the standard techniques and
theorems necessary to solve the problems a few weeks later! Usually
one sees several students in class recqgnize how useful a theorem is long
before the proof is finished; (if I had known that idea two weeks ago,

then )

The use of representations.

If possible, use representations of combinatorial objects not only as
representations but in such a way that the chosen representation makes
it easier to prove the theorem in question.-

EXAMPLE 1. A puzzle known as Instant Insanity, involving stacking up
multicolored cubes in some way (treated in many books on graphs), is
extremely difficult, as the name suggests. It becomes practically trivial
when the cubes are represented by graphs that reflect the color-structure.

EXAMPLE 2. A well known way of representing a partition is a so-called
Ferrers diagram. Such a diagram actually is a representation of two
partitions. This makes it possible to prove theorems of the type “The
number of partitions of an integer with property I equals the number of
partitions with property II”by just looking at the diagrams.

EXAMPLE 3. Binary rooted trees can be represented by (0,1)-sequences
with as many 0’s as 1’s, for which each truncated sequence has more (’s
than 1’s. These sequences are not difficult to count, whereas counting
the trees directly looks very complicated. The problem of counting the
number of dissections of an n-gon into triangles looks quite different.
Usually one first discovers that this problem leads to the same answer
as the previous one before realizing that it can be represented by the
same kind of (0,1)-sequences.

EXAMPLE 4. The reverse situation is also useful as an example. For
instance, a problem on (0,1)-matrices can look like a difficult abstract
problem. Interpreting the matrix as a representation of some combi-
natorial object translates the question into other terminology and can
make it much easier.



Counting techniques.

This topic includes double counting, the principle of inclusion and ex-
clusion, Mébius inversion, the use of quadratic forms, one-to-one map-
pings, generating functions, Polya theory and probablistic methods.
Again a few (favorite) examples.

EXAMPLE 5. This is one of the problems that students try to solve with
no tools. Let the edges of a complete graph on six vertices be colored red
and blue in some way. Prove that there is a triangle with all three edges
of the same color {(a monochromatic triangle). Nearly all the students
give the same proof. From any vertex there must be three edges with
the same color, say red: The three edges between the other endpoints
of the red edges are either all blue or one of them is red and in both
cases we have a monochromatic triangle. So far, so good. The second
question is to show that there are actually at least two monochromatic
triangles. This yields three possible solutions : the empty one, complete
nonsense, or a several page case analysis that is actually correct. Then
comes double counting in class! Every non-monochromatic triangle has
two vertices where a red and a blue edge meet; call this a red-blue
V. Clearly every vertex yields at most six of these red-blue V’s. So,
this second way of counting (or better estimating) the number of non-
momochromatic triangles shows that there are at most 18 of them. As
K¢ contains 20 triangles, we are done in a few lines.

EXAMPLE 6. After the usual examples of inclusion-exclusion it is useful
to point out the reverse procedure. Try to prove the formula

Beor(e-or- {3 520

This can be done using analysis but it is not trivial. The term (—1)
in the sum suggests that maybe something was counted-using inclusion
and exclusion. What? This takes some thinking. The answer is : the
number of surjections from an n-set to a k-set and the formula becomes
a triviality.

ExXAMPLE 7. The following quadratic form method occurs in very many
different situations. Let a; denote the number of combinatorial objects
of a certain kind that have exactly i whatevers. Often one can easily
count pairs of whatevers. Since ) a; counts the number of objects in
question, ) za; counts the number of whatevers, and finally (;) a;
counts pairs of whatevers, one can calculate expressions of the form
> (1 —m)(i —m — 1)a;, where the choice of m is free. The fact that this



quadratic form is nonnegative yields an inequality. It is surprising how
often this idea is used in combinatorics without pointing out that it is a,

general method.

(Non-)existence and constructions.

Methods to be treated here include counting (probabilistic meth-
ods), the method of descent or minimal counterexample, algorithms and
search techniques, induction and recursion, product techniques, substi-
tution, algebraic methods, contraction, introducing extra structure. We

give a few examples.

EXAMPLE 8. The construction of a Latin square of order mn from one
of order m and one of order n is very similar to the construction of a
Hadamard matrix of order mn from one of order m and one of order
n. Both constructions should occur. Later one can use similar product
methods in the construction of block designs. Even the idea of the

product of graphs is analogous.

EXAMPLE 9. A well known proof technique in number theory can be
extended to several parts of discrete mathematics, such as graph theory.
To prove a theorem on finite configurations one assumes that it is not
true, i.e.a counterexample exists. In that case there exists a minimal
counterexample, where minimal refers to the number of components
that justify the word “finite”. One has to think of a way of reducing
this number (delete a vertex or replace the integer n by n — 1) in such
a way that the reduced object is still a counterexample. This yields a
contradiction and thus the theorem is proved. Again, the point of this
talk is that if one decides to show an example of the method, one should
show several rather different examples.

EXAMPLE 10. The idea of substitution occurs in many constructions.
Examples are replacing a vertex of a graph by some graph, points of
a configuration by n-gons (e.g.in Joyal theory), and the following. In
a block design with blocks of different sizes (every pair of points is in
A blocks) let there be a block B with seven points. We delete B and
replace it by the seven triples (lines) of the Fano-plane (a (7,3,1)-design).
The (;) = 21 pairs that were covered by B are now covered by the seven
lines of the plane. This method is used to replace the difficult restriction
of constant blocksize by freedom in that respect in the first round of a
construction, followed by substitutions of the the type mentioned above
to achieve a prescribed constant blocksize.

EXAMPLE 11. Assume that a combinatorial object is defined by com-
binatorial restrictions only. It may be difficult to construct even one



example of such an object. One can freely introduce extra structure,
such as symmetry, an automorphism group, etc. in order to force the
construction in a certain direction. If the extra requirements are not
already prohibitive, one may have an easy construction of a first exam-
ple of the theory. Again, this is a princple that should be illustrated by

examples!

Applications.
Discrete mathematics as a course should be full of examples of ap-

plications in a wide area of subjects. Students should not only learn
a number of applications but should recognize situations where a cer-
tain part of discrete mathematics is the natural tool to use. One should
move from computer science to social sciences to electrical engineering
to design of experiments, etc. Examples may be elementary, obvious,
everyday, but it is essential to have several others that ensure that the
students enjoy the course. These are surprising, challenging, ingenious
(like Instant Insanity), recent (such as satellite communication or the
compact disc). Again, a few favorites as examples.

EXAMPLE 12. Suppose one has a standard nonerasable binary memory
such as paper tape (or a compact disc). Assume that one wishes to store
one of the integers 1 to 7 in this memory on four consecutive occasions.
The usual procedure is to reserve twelve bits for this purpose, where the
four consecutive triples each take care of one storage of a binary 3-tuple.
The world supply shortage has now reached the stage where we cannot
afford this and have to achieve the same with a memory of only seven
bits! (The reader should try to prove as an exercise that it is not possible
to solve the storage problem with a memory of six bits.) The solution
is provided by the Fano plane, a finite geometry with seven points and
seven lines, three points to a line and three lines through a point, any
two points on a unique line. Number the points 1 to 7 and on the first
storage let a 1 in position ¢ indicate a storage of the integer ¢z. This is
still easy. The next step is not difficult either. If the memory contains a
1 in position : and one wishes to store the integer 7 as new information,
find the unique line through ¢ and j and if k is its third point, put a 1
in position k. The reading device for this binary memory is told that
if it sees two 1’s, then it should interpret these as “the third point of
the corresponding line”. Two more usages of this memory to go and we
leave it as an exercise to decide how to do it (hint : a change of memory
with two 1’s results in four 1’s; a subsequent change leads to either five

or six 1’s).



ExaMPLE 13. During the treatment of Hadamard matrices one has
given the product construction and therefore the trivial Hadamard ma-
trix of order two (rows ++4-,respectively +—) makes it possible to con-
struct such matrices of order 2. As an exercise the students have shown
that this leads to a matrix H of order 32 with the property that there
are six columns in the array consisting of H and —H such that the cor-
responding 64 rows in this array are all different in these six columns
(note that 2% = 64). As application one treats the transmission to earth
of pictures of Mars by the stellite Mariner ’69. A picture is divided into
very little squares (pixels) and for each square the degree of blackness is
measured in a scale of 0 to 63 (expressed in binary). In this way the pic-
ture results in a long sequence of 0’s and 1’s to be transmitted to earth.
The transmitted sequence is corrupted by noise and the effect is that the
receiver sometimes interprets a 0 as a 1 and vice versa. In practice there
was so much noise that pictures would have been completely useless.
Suppose we are willing to take roughly five times as long to transmit a
picture. We could repeat each bit five times; if no more than two out
of five are received incorrectly, the receiver makes the right choice. This
would be a substantial improvement but what was done in practice in
1969 was very much better. An integer, say 43, in binary 101011 was
changed to the corresponding sequence of +’s and —’s (l.e.+—+—++)
and transmitted as the corresponding row of 32 +’s and —’s of the array
of H and —H. This also takes five times as long (roughly). The reader
should convince himself that as many as seven of the transmitted sym-
bols may be received incorrectly and nevertheless the receiver will still
have the correct row as the most likely one. The result is known : the
pictures were of great quality. A $rue and recent example!
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