The NSA Back Door to NIST

Thomas C. Hales

Use once. Die once.

—Activist saying about insecure communication

We give a brief mathematical description of the
NIST standard for cryptographically secure pseudo-
random number generation by elliptic curves, the
back door algorithm discovered by Ferguson
and Shumow, and finally the design of the back
door based on the Diffie-Hellman key exchange
algorithm.

NIST (the National Institute for Standards and
Technology) of the U.S. Department of Commerce
derives its mandate from the U.S. Constitution
through the congressional power to “fix the stan-
dard of weights and measures.” In brief, NIST
establishes the basic standards of science and
commerce. Whatever NIST says about cryptog-
raphy becomes implemented in cryptographic
applications throughout U.S. government agencies.
Its influence leads to the widespread use of its
standards in industry and the broad adoption of
its standards internationally.

Through the Snowden disclosures, the NIST
standard for pseudo-random number generation
has fallen into disrepute. Here I describe the
back door to the NIST standard for pseudo-
random number generation in elementary and
mathematically precise terms. The NIST standard
offers three methods for pseudo-random number
generation [1]. My remarks are limited to the third
of the three methods, which is based on elliptic
curves.

Random number generators can either be truly
random (obtaining their values from randomness in
the physical world, such as a quantum mechanical
process) or pseudo-random (obtaining their values
from a deterministic algorithm, yet displaying a
semblance of randomness). The significance of
random number generation within the theory of
algorithms can be gauged by Knuth’s multivolume
book The Art of Computer Programming. It devotes
a massive 193 pages (half of volume two) to the
subject! A subclass of pseudo-random number
generators are cryptographically secure, intended

Thomas C. Hales is professor of mathematics at the Univer-
sity of Pittsburgh. His email address ishales@pitt.edu.

DOI: http://dx.doi.org/10.1090/n0ti1078

NOTICES OF THE AMS

for use in cryptographic applications such as
key generation, one-way hash functions, signature
schemes, private key cryptosystems, and zero
knowledge interactive proofs [3].

Elliptic Curves as Pseudo-Random Number
Generators

The NIST standard gives a list of explicit math-
ematical data (E,p,n,f,P,Q) to be used for
pseudo-random number generation [1]. Here E
is an elliptic curve defined over a finite field F, of
prime order p. The group E(F,) has order n, which
is prime for all of the curves that occur in the NIST
standard. The elements of the group E(F,) consist
of the set of points on an affine curve, together
with a point at infinity which serves as the identity
element of the group. The affine curve is defined
by an equation y? = f(x) for some explicit cubic
polynomial f in F,[x]. Finally, P and Q are given
points on the affine curve.

NIST gives a few sets of data, and in each
case the prime number p is large. (The smallest
is greater than 1077.) No explanation is given of
the particular choices (E, p,n,f,P,Q). We are told
to use these data and not to question why. The
standard stipulates that “one of the following
NIST approved curves with associated points
shall be used in applications requiring certification
under FIPS-140 [U.S. government computer security
accreditation].”

When A is any point other than the identity in
E(F,), we may evaluate the coordinate function x
at A to obtain x(A) € [Fp. By further lifting [, to a
set of representatives in 7, we obtain a function by
composition

X1:E(Fp) \ {0} — F, — Z

Write (n,A) — n % A for the Z-module action of
Z on E. (We write powers of the group element
A using multiplicative rather than exponential
notation.)

The pseudo-random bit generator is initialized
with a random integer seed s obtained by some
different process such as a separate random

VOLUME 61, NUMBER 2



number generator. What is important for us is that
the number s represents the hidden internal state
of the algorithm. The hidden state must be kept
secret for the pseudo-randomness to be effective.
(Once the state is disclosed, a pseudo-random
sequence becomes predictable and useless for
many cryptographic purposes.)

The essence of the pseudo-random bit generator
can be written in the Objective Caml language as
follows. In the syntax of this language, each phrase
(Tet x = a in...) defines the value of x to be a.
The last line of the block of code gives the output
of the function.

let pseudo_random s =
let r = x1 (s * P) 1in
lJet s’ = x1 (r * P) 1in

Jet t = x1 (r * Q 1in
let b = extract_bits t in
(s’,b);

That is, we successively apply the integer s
or r to the point P or the point Q and take
the x1 coordinate of the resulting point, then
extract some bits from the number t. The integer
s" becomes the new secret internal state to be
fed into the next iteration of the function. The
output b is passed to the consumer of pseudo-
random bits. This output may become publicly
known. The function extract_bits operates by
converting t to a list of bits, discarding the 16 most
significant bits (for reasons that do not matter to
this discussion), and giving the remaining bits as
output. According to NIST standards, by iterating
this function, updating the internal state at each
iteration, a cryptographically secure stream b...of
pseudo-random bits is obtained.

The Back Door

This algorithm is fatally flawed, as Ferguson and
Shumow have pointed out [5]. Since P and Q
are nonidentity elements of a cyclic group of
prime order, each is a multiple of the other. Write
P = ex Q for some integer e. We show that, once we
have e in hand, it is a simple matter to determine
the secret internal state s of the pseudo-random
bit generator by observing the output b and thus
to compromise the entire system.

The function extract_bits discards 16 bits.
Given the output b, we take the 216 (a small number
of) possible preimages t of b under extract_bits.
For each t, the coordinate x is known, and solving
a quadratic, there are at most two possibilities for
the coordinate y of a point A on the elliptic curve
such that t = x1(A). One such A is ¥ * Q. For each
A, we compute e x A. One of the small number of
possibilities for e x A is

(1) ex (r«Q)=r*x(exQ)=rxP.

FEBRUARY 2014

Finally s" = x1(r * P). In short, the internal state
s’ can be narrowed down to a small number of
possibilities by an examination of the pseudo-
random output bitstream. Shumow and Ferguson
state that in experiments, “32 bytes of output was
sufficient to uniquely identify the internal state of
the PRNG [pseudo-random number generator].”

The back door to the algorithm is the number
e such that P = e * Q. To use the back door, one
must know the value of e. The NIST standard
does not disclose e (of course!), and extensive
cryptographic experience suggests that it is hard
to compute e from the coordinates of P and Q
(unless you happen to own a quantum computer).
This is the problem of discrete logarithms. But,
starting with e, there is no difficulty in creating a
pair P and Q. The back door is universal: a single
number e gives back door access to the internal
state of the algorithm of all users worldwide.

It is a matter of public fact that the NSA was
tightly involved in the writing of the standard.
Indeed, NIST is required by law to consult with
the NSA in creating its standard. According to the
New York Times, “classified NSA memos appear
to confirm that the fatal weakness, discovered
by two Microsoft cryptographers in 2007, was
engineered by the agency” [4]. The news article
goes on to say that “eventually, NSA became the
sole editor” and then pushed aggressively to make
this the standard for the 163 member countries of
the International Organization for Standardization.
Further historical and social context appears in [6].
The NSA had facile access to the crown jewel e and
motive to seize it. Draw your own conclusions.

Observations

1. The back door to this algorithm is extremely
elementary from a mathematical perspective. We
wrote the essential algorithm in six lines of
computer code, even if more supporting code
is needed to make it industrial strength. The
algorithm could be explained to undergraduate
math majors or sufficiently advanced high school
students. The story also has the spy agency intrigue
to make a good math club talk or a special lecture
in an elementary abstract algebra course. We
essentially just need to understand that an elliptic
curve is an abelian group whose elements (other
than the identity element) are determined by two
numbers x and y, that y is the root of a quadratic
when x is given, and that every nonidentity element
of a cyclic group of prime order is a generator.
Easy stuff.

2. Without prior knowledge of the back door,
how difficult would it be to rediscover the possible
existence of a back door? An analysis of the
argument shows the required level of creativity is
that of an undergraduate homework problem. We

NOTICES OF THE AMS



must think to write the element P as a multiple
of the generator Q in a cyclic group of prime
order. This a student learns in the first weeks of
undergraduate algebra.

The rest of the process of inverting the pseudo-
random number generator is determined by the
definition of the function itself: simply take each
step defining the function and reverse the steps,
asking for the preimage of the function at each
step of its definition, working from the output
back to the secret state s’. Once the question of
inverting the function is asked, it is easy to do the
group theory, even if it is computationally difficult
to write e explicitly.

One-way functions are a standard tool in the
cryptographer’s bag. Every professional who has
been trained to analyze cryptographic algorithms
knows to ask the question of invertibility. It is
unsettling that NIST and others do not seem to
have asked this basic question.

Diffie-Hellman Key Exchange

In what follows, let us assume that someone, whom
we will call the Spy, has access to the back door
e. How is it possible for the Spy and the end
user (the User) of the NIST algorithm to come into
possession of the same shared secret (the internal
state of the pseudo-random number generator)
when all communication between them is public?
Information flows from the Spy to the User through
the published NIST standard, and from the User
back to the Spy through the public output of the
pseudo-random generator. The back door must
have a remarkable cryptographic design to permit
a secret to pass across these public channels yet
prevent the secret from becoming known to a third
party.

As we now explain, the design of the back
door to NIST is based on a well-known algorithm
in cryptography called the Diffie-Hellman key
exchange [2]. This is an algorithm to share a secret
between two parties when there is a possibility that
the channel of communication is being monitored.
In the current context, the Spy has full knowledge
of the Diffie-Hellman key exchange for what it is.
However, the User participates in the exchange
innocently and unwittingly by blindly following
the rules of the NIST protocol.

The Diffie-Hellman key exchange requires a
group, which we will take to be a cyclic group E
of order n (to preserve notation). The group E,
its order n, and a generator Q are made public.
To share a secret, the first party (the Spy) picks
a random number e, which is kept secret, and
publishes P = e x Q to the world. The second
party (the User) picks a random number r, which
is kept secret, and publishes r % Q. Then, by
equation (1), the Spy, who knows e and r * Q, and

NOTICES OF THE AMS

the User, who knows r and e * Q, can both compute
(re) x Q = r * P, which is the shared secret. (In our
context, the shared secret determines the internal
state s’ of the pseudo-random number generator.)
If E is a group in which the public knowledge of
E,n,Q,P =e*xQ,r *x Q does not allow the easy
computation of (re) x Q, then the shared secret is
protected from public disclosure by the difficulty
of the computation. In this way, the only two
who learn the internal state of the pseudo-random
number generator are the Spy and the User.

What we have described here is not an imaginary
scenario: NIST documents do in fact publish the
data E, n, Q, and P needed to initiate the Diffie-
Hellman exchange. A user, when making public the
output from the pseudo-random number generator,
does in fact complete the exchange. Diffie-Hellman
is Diffie-Hellman, whether it has been advertised
as such or not.

To say that the Diffie-Hellman key exchange
algorithm is well known is a vast understatement.
This algorithm is a significant lesson in virtually
every first course in cryptography everywhere in
the world. Building on Merkle, the Diffie-Hellman
paper, by starting the entire field of public key
cryptography, is one of the most important papers
in cryptography ever written.

What is the significance of all this? It is no secret
that the NSA employs some of the world’s keenest
cryptographic minds. They all know Diffie-Hellman.
In my opinion, an algorithm that has been designed
by NSA with a clear mathematical structure giving
them exclusive back door access is no accident,
particularly in light of the Snowden documents.

References

1. E. BARKER and J. KELSEY, Recommendation for random
number generation using deterministic random bit
generators, NIST Special Publication 800-90A (2012),
[http://csrc.nist.gov/pubTlications/nistpubs/]|
[800-90A/SP800-90A. pdfi

2. W. DIFfFIE and M. HELLMAN, New directions in cryptogra-
phy, IEEE Transactions on Information Theory 22 (1976),
644-654.

3. M. LUBY, Pseudorandomness and Cryptographic Appli-
cations, Princeton University Press, 1996.

4. N. PERLOTH, J. LARSON, and S. SHANE, N.S.A. able to foil
basic safeguards of privacy on Web, New York Times,
September 5, 2013, http://www.nytimes.com/2013/!
09/06/us/nsa-foils-much-internet-encryption.
lhtm]

5. D. SHuUMOW and N. FERGUSON, On the possibility
of a back door in the NIST SP800-90 dual Ec prng,
|http://rump2007.cr.yp.to/15-shumow.pdfi, 2007.

6. K. ZETTER, How a crypto “backdoor” pitted

the tech world against the NSA, Wired (2013),

http://www.wired.com/threatlevel/2013/09/

nsa-backdoor/.

VOLUME 61, NUMBER 2


http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://www.wired.com/threatlevel/2013/09/nsa-backdoor/
http://www.wired.com/threatlevel/2013/09/nsa-backdoor/
http://rump2007.cr.yp.to/15-shumow.pdf

