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Large graphs are ubiquitous in mathematics, and
describing their structure is an important goal of
modern combinatorics. The most famous descrip-
tion is given by Szemerédi’s Regularity Lemma
(1978), which asserts that the vertices of any large
enough finite graph may be partitioned into sets
of roughly equal size in such a way that the edges
between most of the sets appear to be nearly
random.

One way to study large, finite objects is to pass
from sequences of larger and larger such objects
to ideal limiting objects. When done properly,
properties of the limiting objects reflect properties
of the finite objects which approximate them, and
vice versa.

Graphons, short for graph functions, are the
limiting objects for sequences of large, finite
graphs with respect to the so-called cut metric.
They were introduced and developed by C. Borgs,
J. T. Chayes, L. Lovász, V. T. Sós, B. Szegedy,
and K. Vesztergombi in [1] and [3]. Graphons
arise naturally wherever sequences of large graphs
appear: extremal graph theory, property testing
of large graphs, quasi-random graphs, random
networks, the thermodynamic limit of statistical
physics systems, et cetera.

Let’s begin with a few definitions and a motivat-
ing example. A graph G is a set of vertices V(G)
and a set of edges E(G) whose elements are pairs
of distinct vertices. A graph homomorphism from
H to G is a map from V(H) to V(G) that preserves
edge adjacency; that is, for every edge {v,w} in
E(H), the edge {ϕ(v),ϕ(w)} is in E(G). Denote
by hom(H,G) the number of homomorphisms
from H to G. For example, hom( ,G) = |V(G)|,
hom( ,G) = 2|E(G)|, and hom( ,G) is 6 times
the number of triangles in G. Normalizing by
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the total number of possible maps, we get the
homomorphism density of H into G,

t(H,G) = hom(H,G)
|V(G)||V(H)| ,

the probability that a randomly chosen map from
V(H) to V(G) preserves edge adjacency. This
number also represents the density of H as a
subgraph in G asymptotically as n = |V(G)| → ∞.
For example, t( ,G) = 2|E(G)|/n2, while the
density of edges in G is 2|E(G)|/n(n − 1); these
two expressions are nearly the same when n is
large.

Consider the following problem from extremal
graph theory:

How many 4-cycles must there be in a graph with
edge density at least 1/2?

It is easy to see that there are at most on the
order of n4 4-cycles in any graph with n vertices.
A theorem of Erdős says that graphs with at least
half the number of possible edges have at least on
the order of n4 4-cycles. More precisely, for any
graph G,

t( ,G) ≥ t( ,G)4;

in particular, if t( ,G) ≥ 1/2, then t( ,G) ≥ 1/16.
In light of this, the problem can be reformulated
as a minimization one: Minimize t( ,G) over finite
graphs G satisfying t( ,G) ≥ 1/2. With some
work, it can be shown that no finite graph G with
t( ,G) ≥ 1/2 achieves the minimum t( ,G) =
1/16.

It’s useful at this point to draw an analogy with
a problem from elementary analysis: Minimize
x3 − 6x over rational numbers x satisfying x ≥ 0.
This polynomial has a unique minimum on [0,∞)
at x =

√
2, so the best we can do over the rationals

is show that the polynomial achieves values
approaching this minimum along a sequence
of rationals approaching

√
2. We know well to

avoid this complication by completing the rational
numbers to the reals and realizing the limit of
such a sequence as

√
2.
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There is a sequence of finite graphs with edge
density at least 1/2 and 4-cycle density approaching
1/16. Let Rn be an instance of a random graph on n
vertices where each edge is decided independently
with probability 1/2. Throwing away those Rn’s for
which t( , Rn) < 1/2, the 4-cycle density in the
remaining graph sequence converges almost surely
to 1/16. Following the

√
2 analogy, we should look

to realize the limit of this sequence of finite graphs
and understand how it solves the minimization
problem at hand.

What might the limit of this sequence of random
graphs (Rn)n be? From the adjacency matrix of a
labeled graph, construct the graph’s pixel picture
by turning the 1’s into black squares, erasing the
0’s, and scaling to the unit square [0,1]2:

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 -→

Pixel pictures can be seen to “converge” graphically;
those of larger and larger random graphs with
edge probability 1/2, regardless of how they are
labeled, seem to converge to a gray square, the
constant 1/2 function on [0,1]2.

The constant 1/2 function on [0,1]2 is an
example of a labeled graphon. A labeled graphon is
a symmetric, Lebesgue-measurable function from
[0,1]2 to [0,1] (modulo the usual identification
almost everywhere); such functions can be thought
of as edge-weighted graphs on the vertex set [0,1].
An unlabeled graphon is a graphon up to relabeling,
where a relabeling is the result of applying an
invertible, measure-preserving transformation to
the [0,1] interval. Note that any pixel picture is a
labeled graphon, meaning that (labeled) graphs are
(labeled) graphons.

As another example of this convergence, con-
sider the growing uniform attachment graph
sequence (Gn)n defined inductively as follows.
Let G1 = . For n ≥ 2, construct Gn from Gn−1

by adding one new vertex, then including each
edge not already in E(Gn−1) independently with
probability 1/n. It turns out that this graph se-
quence converges almost surely to the graphon
1 −max(x, y). (Since matrices are indexed with
(0,0) in the top left corner, so too are graphons.)

There are two natural ways to label a complete
bipartite graph, and each suggests a different limit
graphon for the complete bipartite graph sequence.
Both sequences of labeled graphons in fact have
the same limit, as indicated in the diagram; the
reader is encouraged to return to this example
after we define this convergence more precisely.

Homomorphism densities extend naturally to
graphons. For a finite graph G, the density t( ,G)
can be computed by giving each vertex of G a mass
of 1/n and integrating the edge indicator function
over all pairs of vertices. In exactly the same way,
the edge density t( ,W) of a labeled graphon W
is ∫

[0,1]2
W(x, y) dxdy,

and the 4-cycle density t( ,W) is∫
[0,1]4

W(x1, x2)W(x2, x3)

W(x3, x4)W(x4, x1) dx1dx2dx3dx4.

It is straightforward from here to write the expres-
sion for the homomorphism density t(H,W) of a
finite graph H into a graphon W . This allows us
to see how the constant graphon W ≡ 1/2 solves
the minimization problem: t( ,W) = 1/2 while
t( ,W) = 1/16.

To see the space of graphons as the completion
of the space of finite graphs and make graphon con-
vergence precise, define the cut distance δ�(W,U)
between two labeled graphons W and U by

inf
ϕ,ψ

sup
S,T

∣∣∣∣ ∫
S×T

W
(
ϕ(x),ϕ(y)

)
−U

(
ψ(x),ψ(y)

)
dxdy

∣∣∣∣,
where the infimum is taken over all relabelings ϕ
of W and ψ of U , and the supremum is taken over
all measurable subsets S and T of [0,1]. The cut
distance first measures the maximum discrepancy
between the integrals of two labeled graphons over
measurable boxes (hence the �) of [0,1]2, then
minimizes that maximum discrepancy over all
possible relabelings. (It is possible to define the cut
distance between two finite graphs combinatorially,
without any analysis, but the definition is quite
involved.)

The infimum in the definition of the cut distance
makes δ� well defined on the space of unlabeled
graphons, but it is not yet a metric. Graphons W
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and U for which t(H,W) = t(H,U) for all finite
graphsH are called weakly isomorphic ; it turns out
that W and U are weakly isomorphic if and only if
δ�(W,U) = 0. The cut distance becomes a genuine
metric on the space G of unlabeled graphons
up to weak isomorphism. The examples of pixel
picture convergence above provide examples of
convergent sequences and their limits in G (up to
weak isomorphism).

We conclude by highlighting a few foundational
results about graphons. The accompanying page
references are from Lovász’s book [2], to which
the interested reader is encouraged to refer for
more details.

Theorem 1 (Prop. 11.32, p. 185). Every graphon is
the δ�-limit of a sequence of finite graphs.

To approximate a labeled graphon W by a finite
labeled graph, let S be a set of n randomly chosen
points from [0,1], then construct a graph on S in
which the edge {si , sj} is included with probability
W(si , sj). With high probability (as |S| → ∞), this
labeled graph approximates W well in cut distance.

Theorem 2 (Thm. 9.23, p. 149). The space (G, δ�)
is compact.

This implies that (G, δ�) is a complete metric
space. Combining this fact with Theorem 1, we
see that the space of graphons is the completion
of the space of finite graphs with the cut metric!
This theorem also demonstrates the way in which
graphons provide a bridge between different forms
of Szemerédi’s Regularity Lemma: Theorem 2 may
be deduced from a weak form of the lemma,
while a stronger regularity lemma follows from the
compactness of G.

Theorem 3 (Lem. 10.23, p. 167). For every finite
graph H, the map t(H, ·) : G → [0,1] is Lipschitz
continuous.

Theorems 2 and 3 combine with elementary
analysis to show that minimization problems in
extremal graph theory (such as the one considered
above) are guaranteed to have solutions in the
space of graphons. These graphon solutions pro-
vide “templates,” via Theorem 1, for approximate
solutions in the space of finite graphs.
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