
Prime Numbers: A
Much Needed Gap
Is Finally Found
John Friedlander

In May of 2013 the Annals of Mathematics accepted
a paper [Z], written by Yitang Zhang and showing
“bounded gaps for primes,” that is, the existence
of a positive constant (specifically mentioned was
70 million) with the property that infinitely many
pairs of primes differ by less than that constant.
Zhang’s result created a sensation in the number
theory community, but much more broadly as well.

I don’t know what it says about the current state
of the world or of mathematics or maybe just of me,
but I began writing these words by going to Google
and typing in “zhang, primes, magazine.” Among
the first 10 out of more than 74,000 hits, I found
references to articles on this topic by magazines
with the names Nautilus, Quanta, Nature, Discover,
Business Insider , and CNET . (Within a week of my
beginning this, there has appeared a long article
[W] in the The New Yorker .) I can’t begin to guess
how many more there have been. I understand
that there is also a movie and, I guess, probably
television interviews as well. Zhang has since
won a number of prizes, including a MacArthur
Fellowship, the Ostrowski Prize, the Rolf Schock
Prize of the Royal Academy of Sciences (Sweden),
and a share of the Cole Prize of the American
Mathematical Society. There have also been quite a
number of professional papers written about the
mathematics and its ensuing developments.

Thus, when I was invited by Steven Krantz to
write this article and I requested a few days to think
it over, my overriding concern naturally was: “What
can I possibly write that is not simply covering
well-trodden ground?” This is my excuse for what
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follows being (I hope) somewhat of a compromise
between “folksy gossip” and “bounded gaps for
nonspecialists.” Perhaps that is what such a Notices
article should be.

One aspect of this saga—one which presumably
should have no place at all—concerns the refereeing
of the paper. Both before and after the acceptance
of the paper there has been an unseemly amount
of attention paid to this, and I admit to being in the
process of exacerbating that here. However, the
recent article in the New Yorker magazine has now
driven the final nail in the coffin of confidentiality,
the adherence to which has, from the beginning,
been what might most charitably be described as
tenuous.

As I understand it, the Zhang paper, although
received a few days earlier, was first seen by
the editor on April 22, 2013. On the morning of
April 24, in response to his request of the previous
day for a quick opinion, I wrote back, “At first
glance this looks serious. I need a few days to think
about it and shall write again after that.”

A couple of days later I phoned my old friend
Henryk Iwaniec to make arrangements regarding a
joint project we were going to work on during my
trip a few days later to the Institute for Advanced
Study in Princeton. “The Annals sent me a paper,”
he mentioned. “I’ll bet it’s the same one they sent
me,” I replied. Within a few days, I was at IAS, and
meanwhile it seemed the Annals had received a
raft of quick opinions, all suggesting that there
was a nontrivial chance of this being correct, but
every one of them deflecting elsewhere the request
by the editor to give the paper detailed refereeing.

After Henryk and I, independently and then
jointly, had initially refused to do this, we wrote
on May 4: “…have been further considering your
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request that we referee this paper. The paper,
if correct, would be of great importance and
absolutely deserve to be published in the Annals.
As the ideas appear to have a very good chance
of succeeding, we have decided to accept your
invitation to jointly referee it.”

That message was well timed, for the next
morning we received an email from a friend
(initials P.S.) with the words: “…By the way, Katz
tells me that he is dealing with a paper at the
Annals which claims bounded gaps in primes and
that all experts (e.g…) are simply passing the buck.
That is, you guys are saying it looks like it may be
correct (is that so?) but no one is willing to commit
to look closely. I haven’t seen the paper but if it is
serious—it isn’t a good sign if everyone suggests
each other to referee.” I was glad to be in a position
wherein we were able to write back: “Before you
bawl us out, you might want to talk to Nick again.”

I should interrupt this narrative to stress that
I am quite sure that almost any of the other
“experts” referred to would have, if pressed a little
bit harder, agreed to do this job. Henryk and I had
the advantage of being on the scene and also of
having each other for company.

As many will know, among visitors to the
Institute, it can be only a truly monastic individual
who is willing to pass up the lunches. So, as
a welcome break from the very long hours of
checking every line (we had already seen that the
basic ideas could not be otherwise dismissed), we
went to lunch and sat at the “math table.” There
were only a few people present there who did
not know what we were doing. Our response to
the questioning on Monday, “So far, so good.” On
Tuesday, “So far, so good.” On Wednesday, the
same. On Thursday, May 8, we were able to say, “It
is correct.” Two hours later, the report had been
sent.

Meanwhile, emails enquiring about the paper’s
correctness had also been arriving from elsewhere;
from D.G. in NY, from D.G. in SJ, from S-T. Y.
in Cambridge. One I liked came from Zhang’s
Princeton namesake: “…I knew him very well even
before I came to the US. It would be great if he
proved such a theorem.” Within a few days, Zhang
had his referee report and was giving an invited
lecture on his result at Harvard.

I won’t write more than a few words about
Zhang’s history. I can add nothing to the many
magazine articles that have been written. A young
person raised during a turbulent period of Chinese
history, captivated by mathematics but without
easy access to library resources, the difficulty
in obtaining an education, then even more so
an academic position, but continuing to follow
the dream—the dream about prime numbers and
zeta-functions—then, after many years, finding a

stunning success which had evaded the experts. It’s
a storybook ending to a tale well suited to capturing
the public fancy. In addition to showcasing this
spectacular theorem, the publicity is of course a
very good thing to happen to a discipline that seems
not to advertise itself quite as well as do some
others and which can be heard to not infrequently
complain about the (evident, but perhaps not
totally unrelated) inequities in research funding.

In any case, let’s pass on to what is always the
most beautiful part of the story, the mathematics.
The intention here is to make the description brief
and accessible to all potential readers. For those
interested in a much more extensive introduction
to the subject matter yet without forging into the
original works, there is now the excellent treatment
given in the Bulletin article [G] of Andrew Granville.

Everybody knows to whom we credit the origin
of the Goldbach conjecture; the name tells you
that. Just about as famous is the twin prime
conjecture, that there be infinitely many pairs
of primes differing by two, such as 3 and 5,
17 and 19, 41 and 43 (yes, I’ve left some out).
Maybe somebody knows the origin of this very old
problem, but not I. Although there seems to be no
record to substantiate this, it would not be out of
the question for Euclid to have speculated about it.

The prime number theorem states that if π(x)
denotes the number of primes up to x, then, as
x→∞,

π(x) ∼ x/ log x,
where the notation means that the quotient of
the left side by the right side approaches one as
x approaches infinity. This implies that if we are
looking at integers, say between x and 2x, with x
large, then the average gap has size about log x.
A seemingly modest step beyond this would ask
that, for some constants 0 < c < 1 < C, there be,
for arbitrarily large x, pairs of consecutive primes
with a gap less than c log x as well as pairs for
which the gap is greater than C log x. A little less
modest would be the request that the above hold
for all c and C satisfying the above inequalities.

For large gaps C, the stronger request was,
already in 1931, substantiated by a theorem of
Westzynthius. For small gaps, progress came far
more slowly, and although the existence of some
acceptable c < 1 was proven by Erdős in 1940, and
despite several highly nontrivial papers further
lowering the known verifiable constant, the proof
that the result holds for arbitrary positive c came
only in the past few years, with the breakthrough
paper [GPY] of Goldston, Pintz, and Yıldırım.

Successful approximations to the still unproven
twin prime conjecture, as to many problems about
prime numbers, start with sieve methods. Although
extensively developed over the past century, such
methods are, at root, elaborations of the ancient
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sieve of Eratosthenes. One takes a finite sequence
A of integers and a set P of (small) primes and
tries to estimate the number of integers in A
not divisible by any prime in P. This is done
by exclusion-inclusion and requires us to know,
for many given d formed by taking products of
subsets of the primes in P, just how many of
the integers of A are divisible by d. For many
sequences A of arithmetic interest, this number
has a smooth approximation apart from a small
remainder rd , and just how this “error” accumulates
when summed over d determines the degree of
success of the argument. In the case of the twin
prime problem, one may begin with the set of
integers

A= {p − 2 : p ≤ x, p prime}
and cast out multiples of odd integers d, as large
as we can, subject to the summed remainder, say
R(D) =

∑
d≤D |rd|, being acceptable. In this fashion,

Renyi succeeded in being the first to prove that,
for some fixed r , there are infinitely many primes
p such that p − 2 has at most r prime factors.
The smallest known value of r was eventually
lowered to 2 by J-R. Chen, but the so-called parity
phenomenon of sieve theory (see [FI2]) prevents
one from reaching the goal along these lines.

Note that in the above scenario the number of
multiples of a given integer d is just π(x;d, a),
the number of primes p ≤ x in the arithmetic
progression amodulo d, specifically for a = 2. The
prime number theorem for arithmetic progressions
gives us an asymptotic formula for this quantity,
but so far one has succeeded to prove this only for
d very small compared to x, and as stated above,
it is crucial to have information for many (and
hence also for large) d. Fortunately, we need this
information for the remainder only on average
over d. The Bombieri-Vinogradov theorem tells us
that this averaged remainder is small for d almost
up to x1/2. We have (slightly more than) the bound∑

d<x
1
2 −ε

max
gcd(a,d)=1

∣∣π(x;d, a)−π(x)/ϕ(d)∣∣
� x/(log x)A

holding for arbitrary fixed positive A and ε. Here,
the Euler function ϕ(d) counts the number of
“reduced” residue classes modulo d, that is, those
relatively prime to the modulus, and the symbol
� indicates that the left side is bounded by some
constant multiple of the right side. The B-V theorem
has played a key role in all attacks on the small
gaps problem, and indeed Bombieri’s work was
motivated by an important step along the way [BD]
jointly with H. Davenport.

The parity phenomenon tells us that we can’t
hope to succeed in proving, along these lines, that
there are pairs of integers differing by two, both

of which are prime; we have to give something up.
In the Renyi-Chen theorem we sacrifice one of the
integers being prime, but get close to the result
in that this integer is an “almost-prime.” In the
GPY method we insist on requiring both integers
to be prime, but we give up the demand that they
necessarily have a single prescribed difference,
much less that the distance specifically be two.
Indeed, such a sacrifice had already been conceded
in all earlier attempts at the small gap problem,
but GPY introduced ideas that went much further
than previously and were the first to get close to
the result. They begin with an “admissible” k-tuple
of integersH = {h1, . . . , hk}. By this we mean that
for every prime number p, at least one of the
residue classes modulo p is missed by every one
of the hi . It is expected, but is presumably very
far from our current reach, that every admissible
k-tuple of integersH ought to possess infinitely
many translates n+H , all of whose integers are
primes. (It is easy to see that admissibility is
a necessary condition for such a result to hold.
To take the simplest example, note that {0,2} is
admissible, but {0,1} is not, and indeed every
second integer is even.) The GPY approach asks for
a more modest conclusion: it seeks to estimate the
number of translates n+H ofH which contain at
least two primes. In addition to proving that there
exist pairs of primes arbitrarily closer than the
average, [GPY] proves, using an essential (to my
knowledge not otherwise published) input from
Granville and Soundararajan, that any improved
exponent beyond 1/2 in the Bombieri-Vinogradov
theorem would imply the bounded gaps theorem.

There had already been in the 1980s in [Fo-I], [BFI]
some results that went beyond the exponent 1/2
in Bombieri–Vinogradov type estimates. However,
these results lacked a certain uniformity in the
residue class, one that had been present in the
earlier B-V theorem. Specifically, as we noted above
in connection with the Renyi approach, regardless
of which modulus d was being considered, it
was always the same initial term, 2 modulo d.
For that approach, wherein the residue class is
fixed, the results in [Fo-I], [BFI] were satisfactory.
However, when one begins, as does GPY, with
a more complicated set, a k-tuple of integers
{h1, . . . , hk}, then the relevant residue classes
modulodmove around asd does and modifications
to the arguments are required.

These modifications have now, several years
after [GPY], been successfully implemented for
three crucial reasons. In the first place, unlike in the
original Bombieri-Vinogradov theorem, wherein
every reduced class was permitted to enter, the
number of residue classes involved in the k-tuple is
not very large. In the second place, the movement of
these classes is not arbitrary but occurs in a natural
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arithmetic fashion; specifically, it is controlled by
the Chinese Remainder Theorem. In the third
place, Zhang is very talented. In addition to being
completely at ease with all of the relevant earlier
work (of which there was much), he succeeded in
producing a number of crucial innovations of his
own.

The full proof, especially when considered from
first principles, is a beautiful intermingling of ideas
from various parts of the subject: combinatorial, al-
gebraic, analytic, geometric. Deligne’s work makes
an appearance in bounds for certain exponential
sums (along the lines of [FI1], but only after one of
Zhang’s most significant improvements).

The excitement created by Zhang’s result was
by no means confined to the popular press. Very
shortly after the news was out, a number of small
improvements in Zhang’s constant 70 million began
to appear on the Number Theory arXiv. During that
summer, Iwaniec and I had written up our own
account of Zhang’s work, originally not intended
for publication, but later appearing in [FI4]. About
the same time, a Polymath project, led by Terence
Tao and attracting contributors, some young and
some more established, systematically whittled
away in far more substantial fashion, employing
ever more delicate arguments, algebro-geometric,
combinatorial, and computational. For months, on
any given day it was dangerous to claim that one
knew the latest value of this constant!

Then, in early autumn, things took a sudden
turn. At Oberwolfach in October 2013 and on the
arXiv two or three weeks later, James Maynard
announced a further breakthrough. Simultaneously,
Terence Tao found essentially the same results
along closely related lines. Maynard’s paper has
since been published in [M]. In this, he re-proves
Zhang’s bounded gap result in both simpler and
stronger quantitative form. Moreover, he succeeds
in producing, for each given m, not just for
m = 2, the existence of m primes in infinitely
many intervals, each having a length bounded by a
constant (depending only onm). Precisely, with pn
denoting the nth prime, one has

lim
n

inf
(
pn+m − pn

)
< Cm3e4m

for a universal positive constant C. Even after
Zhang’s result, it seemed amazing to think one
would soon see even triples handled.

Maynard’s method (as well as that of Tao) begins,
as did Zhang’s, with the GPY approach but then
immediately takes off in a completely different
direction. To describe this we need to say a fair
bit more about GPY. The starting point for their
method rests on consideration of the difference
between two sums.

Let H = {h1, . . . , hk}, as before, be an “ad-
missible” k-tuple of integers. We consider a
sum

S =
∑

x<n<2x

( ∑
1≤j≤k

χp(n+ hj)− ν
)
θn = S1 − S2

say, whereχp is the characteristic function of prime
numbers and θn is a certain nonnegative weight
whose intelligent choice is key to the argument.
Suppose we can prove for some positive ν that
we have S > 0. Since θn is nonnegative, it follows
for at least one n that the quantity in parentheses
is positive and for that n, the number of primes
n + hj is at least ν (or possibly better, the least
integer greater than or equal to ν), and these
primes all lie in an interval of length no greater
than the diameter ofH .

To evaluate the sum S we deal with the two
sums S1, S2 separately. To have any chance of
success in making this difference positive, we are
going to have to require the arithmetic function θn
to have various properties which are impossible to
justify in a brief account and which suggest that
one look at Selberg sieve weights. One can find a
rather full account of the Selberg sieve and the
GPY argument, for example, in Chapter 7 of [FI3].
Suffice it to say here that GPY chose weights of the
following type:

θn =
(∑
d
µ(d)f (d)

)2 .

Here µ is the Möbius function, the sum goes over
those d < D, d|(n+h1) . . . (n+hk), and f is of the
form f (d) = F(logD/d) where F is a nice smooth
function to be determined. To evaluate each of the
sums Si we open the square and interchange the
order of summation, bringing us to the inner sum,
now being over n. In the case of S2 all goes well,
but when it comes to S1, because of the presence of
χp, the inner sum counts primes in an arithmetic
progression, and we need a Bombieri-Vinogradov
type result. This limits the choice of D in that we
require an acceptable B-V result with moduli up
to level D2 (because of the square in our choice
of θn). The final problem is to choose F well. GPY
actually made a choice not quite optimal but just
about as good for the application.

The innovation which allows so much progress
in [M] is simply the attachment of a k-dimensional
version of the sieve weight used by GPY, one which
gives separate individual treatment to each of the
elements of the k-tuple. Roughly speaking, his
weights look like

θn =
(∑

d

( ∏
1≤i≤k

µ(di)
)
f (d1, . . . , dk)

)2
,

where the sum goes over k-tuples d = (d1, . . . , dk)
with di|n+ hi , 1 ≤ i ≤ k, and

∏
1≤i≤k di ≤ D.
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Selberg had many years ago briefly introduced
this multidimensional version of his weight but
did not make much use of it, and certainly it was
not responsible for any of his great advances in
the subject. This new weight leads, in the analytic
evaluation of the two sums being compared, to
some complications vis-à-vis the one-dimensional
version in GPY, in particular in the optimal choice
of f , but Maynard overcomes these in elegant
fashion.

As a result of this new approach, Maynard is able
to dispense with all of the most advanced results
on the distribution of primes in arithmetic progres-
sions, such as those which form the centerpiece
of innovation in Zhang’s proof. The Bombieri-
Vinogradov theorem is amply sufficient for the
qualitative statement of Maynard’s results, and I
expect, but do not know if anybody has checked,
that even the somewhat complicated-looking pre-
cursors of the B-V theorem dating back to Renyi
might be sufficient. However, for explicit bounds
on these gaps, strong statements of Zhang type
are important, with the happy consequence being
a new Polymath project [P], including Maynard’s
incorporation into the enterprise and resulting in
further quantitative improvements (for twins, we
are now down into the hundreds) by a combination
of the two approaches. One particularly striking
achievement is a result in [P] which is conditional
on the assumption of a very strong Generalized
Elliott-Halberstam Conjecture (of a type introduced
in [BFI]) and concerning the average distribution
in arithmetic progressions to very large moduli (d
running up to x1−ε) of certain arithmetic functions.
As a consequence of this conjecture, the authors
of [P] deduce the existence of infinitely many pairs
of primes differing by no more than six.

Meanwhile, there have also been further devel-
opments in other directions. The Maynard weights
offer various possibilities for future research and,
especially following the availability of the preprint
form of [M], there quickly followed a dozen or
more inventive uses of the new ideas to attack
different problems, questions on number fields,
on polynomials, on primitive roots, on cluster
points of normalized prime gaps, on elliptic curves,
on large gaps between primes.…One can find
more information on these in Section 12 and
Appendix B of [G], the electronic version of which
became available a few days before I wrote these
words. Those few pages, although near the end
of Granville’s paper, can be read without having
gone through the heavier work of the immediately
preceding sections and are highly recommended
to the readers of this article. Moreover, all of these
works can be located through the very extensive
list of references in [G].

I enjoyed having had the opportunity to co-
organize, with D. Goldston and K. Soundararajan, a
November 2014 workshop at the American Institute
of Mathematics shortly before its relocation from
Palo Alto to San Jose. It was a particular pleasure
to hear talks on many of these innovations and
especially to see that a very high percentage of
them are due to young mathematicians, young
mathematicians of both genders.
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