Teacher Training University Faculty of Mathematical Sciences

Time: 4 h

PHD QUALIFY EXAM, 1386 Commutative Algebra 2

Throughout R is a commutative ring with $1 \neq 0$.

1. (a) Let $R \longrightarrow S$ be a faithfully flat ring homomorphism of noetherian rings, and let M be an R-module. Prove that:

Ass $_R(M) \subseteq \{\mathfrak{Q} \cap R : \mathfrak{Q} \in \operatorname{Ass}_S(M \otimes_R S)\}.$

- (b) Let (R, \mathfrak{m}) be a noetherian local ring and let M be a finitely generated R-module. Prove that if $\mathfrak{Q} \in \operatorname{Supp}_{\widehat{R}}(\widehat{M})$, then $\mathfrak{Q} \cap R \in \operatorname{Supp}_{R}(M)$ and that $\operatorname{ht}_{M}(\mathfrak{Q} \cap R) \leq \operatorname{ht}_{\widehat{M}}(\mathfrak{Q})$.
- **2.** Assume that (R, \mathfrak{m}) is an artinian local ring. Prove that the following statements are equivalent.
 - (a) R is Gorenstien.
 - (b) $\mathfrak{a} = 0 :_R (0 :_R \mathfrak{a})$ for all ideals \mathfrak{a} of R.
 - (c) $\mathfrak{a} \cap \mathfrak{b} \neq 0$ for all non-zero ideals \mathfrak{a} and \mathfrak{b} of R.
- **3.** Assume that *R* is a regular local ring and that \mathfrak{a} is an ideal of *R* of ht $\mathfrak{a} = 1$. Prove that the following statements are equivalent.
 - (a) R/\mathfrak{a} is Cohen–Macualay.
 - (b) ht $\mathfrak{p} = 1$ for all $\mathfrak{p} \in \operatorname{Ass}(R/\mathfrak{a})$
 - (c) \mathfrak{a} is a principal ideal.
- **4.** Let (R, \mathfrak{m}) be a local ring and let x_1, \dots, x_n be a system of parameters for R. Prove that R is Cohen–Macaulay if and only if x_1, \dots, x_n is an R-sequence.

Now, assume that R is Cohen–Macualay and that $1 \leq i \leq n$. Prove that the ideal $(\sum_{j=1}^{i} Rx_j)^t$ is unmixed for all $t \in \mathbb{N}$.

5. Let \mathfrak{q} be an \mathfrak{m} -primary ideal in the local ring (R, \mathfrak{m}) and suppose that $\mathfrak{q} = \bigcap_{i=1}^{n} \mathfrak{q}$ is a minimal decomposition of \mathfrak{q} as intersection of irreducible ideals of R. Prove that n is an invariant (not dependent on the decomposition), which is called the type of \mathfrak{q} and denoted by $r(\mathfrak{q})$.

Prove that if R is Cohen-Macualay, \mathfrak{q} and \mathfrak{q}' are generated by some sets of system of parameters then $r(\mathfrak{q}) = r(\mathfrak{q}')$.

- 6. Let (R, \mathfrak{m}) be a noetherian local regular ring of dimension d. Assume that \mathfrak{a} is an ideal of R such that dim $(R/\mathfrak{a}) = s$ and that R/\mathfrak{a} is a regular ring.
 - (i) Prove that the dimension of the vector space (m² + a)/m² over the field R/m is d − s.
 - (ii) Prove that there exist x_1, \dots, x_{d-s} in \mathfrak{a} such that $\{x_1, \dots, x_{d-s}\}$ is a subset of a minimal generator of \mathfrak{m} .

2 PHD QUALIFY EXAM, 1386 COMMUTATIVE ALGEBRA 2

(iii) Prove that $\mathfrak{a} = x_1 R + \cdots + x_{d-s} R$.

GOOD LUCK