```
PHD QUALIFY EXAM, 1386
```

$\mathfrak{C o m m u t a t i v e ~} \mathfrak{A l g e b r a} 2$

Throughout R is a commutative ring with $1 \neq 0$.

1. (a) Let $R \longrightarrow S$ be a faithfully flat ring homomorphism of noetherian rings, and let M be an R-module. Prove that:

$$
\operatorname{Ass}_{R}(M) \subseteq\left\{\mathfrak{Q} \cap R: \mathfrak{Q} \in \operatorname{Ass}_{S}\left(M \otimes_{R} S\right)\right\}
$$

(b) Let (R, \mathfrak{m}) be a noetherian local ring and let M be a finitely generated R-module. Prove that if $\mathfrak{Q} \in \operatorname{Supp}_{\widehat{R}}(\widehat{M})$, then $\mathfrak{Q} \cap R \in \operatorname{Supp}_{R}(M)$ and that ht ${ }_{M}(\mathfrak{Q} \cap R) \leq \operatorname{ht}_{\widehat{M}}(\mathfrak{Q})$.
2. Assume that (R, \mathfrak{m}) is an artinian local ring. Prove that the following statements are equivalent.
(a) R is Gorenstien.
(b) $\mathfrak{a}=0:_{R}\left(0:_{R} \mathfrak{a}\right)$ for all ideals \mathfrak{a} of R.
(c) $\mathfrak{a} \cap \mathfrak{b} \neq 0$ for all non-zero ideals \mathfrak{a} and \mathfrak{b} of R.
3. Assume that R is a regular local ring and that \mathfrak{a} is an ideal of R of $h t \mathfrak{a}=1$. Prove that the following statements are equivalent.
(a) R / \mathfrak{a} is Cohen-Macualay.
(b) ht $\mathfrak{p}=1$ for all $\mathfrak{p} \in \operatorname{Ass}(R / \mathfrak{a})$
(c) \mathfrak{a} is a principal ideal.
4. Let (R, \mathfrak{m}) be a local ring and let x_{1}, \cdots, x_{n} be a system of parameters for R. Prove that R is Cohen-Macaulay if and only if x_{1}, \cdots, x_{n} is an R-sequence.

Now, assume that R is Cohen-Macualay and that $1 \leq i \leq n$. Prove that the ideal $\left(\sum_{j=1}^{i} R x_{j}\right)^{t}$ is unmixed for all $t \in \mathbb{N}$.
5. Let \mathfrak{q} be an \mathfrak{m}-primary ideal in the local ring (R, \mathfrak{m}) and suppose that $\mathfrak{q}=$ $\cap_{i=1}^{n} \mathfrak{q}$ is a minimal decomposition of \mathfrak{q} as intersection of irreducible ideals of R. Prove that n is an invariant (not dependent on the decomposition), which is called the type of \mathfrak{q} and denoted by $r(\mathfrak{q})$.

Prove that if R is Cohen-Macualay, \mathfrak{q} and \mathfrak{q}^{\prime} are generated by some sets of system of parameters then $r(\mathfrak{q})=r\left(\mathfrak{q}^{\prime}\right)$.
6. Let (R, \mathfrak{m}) be a noetherian local regular ring of dimension d. Assume that \mathfrak{a} is an ideal of R such that $\operatorname{dim}(R / \mathfrak{a})=s$ and that R / \mathfrak{a} is a regular ring.
(i) Prove that the dimension of the vector space $\left(\mathfrak{m}^{2}+\mathfrak{a}\right) / \mathfrak{m}^{2}$ over the field R / \mathfrak{m} is $d-s$.
(ii) Prove that there exist x_{1}, \cdots, x_{d-s} in \mathfrak{a} such that $\left\{x_{1}, \cdots, x_{d-s}\right\}$ is a subset of a minimal generator of \mathfrak{m}.
(iii) Prove that $\mathfrak{a}=x_{1} R+\cdots+x_{d-s} R$.

Good Luck

