

PhD comprehensive exam, Ordibehesht 1392

Homological Algebra II

Throughout, R is a commutative Noetherian ring with $1_R \neq 0$.

1. Let M be an R-module, \mathfrak{a} an ideal of R. Prove that, for any $x \in R$ and each $i \in \mathbb{N}_0$, there exists an exact sequence

$$0 \longrightarrow \mathrm{H}^{1}_{Rx}(\mathrm{H}^{i-1}_{\mathfrak{a}}(M)) \longrightarrow \mathrm{H}^{i}_{\mathfrak{a}+Rx}(M) \longrightarrow \mathrm{H}^{0}_{Rx}(\mathrm{H}^{i}_{\mathfrak{a}}(M)) \longrightarrow 0.$$

(Hint: You may first prove the exact sequence
$$0 \longrightarrow \mathrm{H}^{0}_{Rx}(M) \longrightarrow M \longrightarrow M_{x} \longrightarrow \mathrm{H}^{1}_{Rx}(M) \longrightarrow 0.)$$

2. For an ideal \mathfrak{a} of the ring R and an R-module M, define $\operatorname{cd}(\mathfrak{a}, M) := \sup\{i \in \mathbb{N}_0 | \operatorname{H}^i_{\mathfrak{a}}(M) \neq 0\}.$

Prove that, for proper ideals \mathfrak{a} and \mathfrak{b} of R and a non-zero finitely generated R-module M,

$$\operatorname{cd}(\mathfrak{a} + \mathfrak{b}, M) \leq \operatorname{cd}(\mathfrak{a}, M) + \operatorname{ara}(\mathfrak{b}),$$

where $\operatorname{ara}(\mathfrak{b})$ denotes the arithmetic rank of \mathfrak{b} .

- 3. Let (R, \mathfrak{m}) be a local ring with dim R = d. Prove that the following statements are equivalent.

 - (i) $\operatorname{H}^{d}_{I}(R) = 0$ for all ideals I of R with $\dim(R/I) > 0$. (ii) $\operatorname{H}^{d}_{\mathfrak{p}}(R) = 0$ for all prime ideals \mathfrak{p} of R with $\dim(R/\mathfrak{p}) = 1$.
- 4. Assume that \mathfrak{a} is an ideal of R and that M is a finitely generated R-module. Prove the following statements.
 - (a) If R/\mathfrak{a} is Artinian, then $\mathrm{H}^{i}_{\mathfrak{m}}(M)$ is Artinian for all integers *i*.
 - (b) If R is local, then the converse of (a) is also true.