PhD comprehensive exam, Ordibehesht 1390 Tarbiat Moallem University, Faculty of Mathematical Sciences and Computer Homological Algebra II

Throughout all rings are commutative with $1 \neq 0$.

- 1. Let R be a Noetherian ring and let M be a finitely generated R-module. Assume that \mathfrak{a} is proper ideal of R which contains an M-regular sequence of length n. Prove the following statements.
 - (a) If R is local with maximal ideal \mathfrak{m} , then, for any positive integer t, Hom $_{R}(R/\mathfrak{m}, \operatorname{Ext}_{R}^{n}(R/\mathfrak{a}, M)) \cong \operatorname{Hom}_{R}(R/\mathfrak{m}, \operatorname{Ext}_{R}^{n}(R/\mathfrak{a}^{t}, M)).$
 - (b) Ass $_{R}(\operatorname{H}^{n}_{\mathfrak{a}}(M)) \subseteq \operatorname{Ass}_{R}(\operatorname{Ext}^{n}_{R}(R/\mathfrak{a},M)).$
- 2. Let (R, \mathfrak{m}) be a complete Noetherian local ring and let I be an ideal of R. Set $t := \sup\{i : \operatorname{H}^{i}_{I}(R) \neq 0\}$. Assume that $\operatorname{H}^{t}_{I}(R)$ is Artinian.
 - (a) Show that if A is an Artinian R-module then

Att
$$_{R}A = \{ \mathfrak{p} \in \operatorname{Spec} R : \mathfrak{p} = \operatorname{Ann}_{R}(A/\mathfrak{p}A) \}.$$

- (b) Show that if $\mathfrak{p} \in \operatorname{Att}_R(\operatorname{H}^t_I(R))$ then dim $R/\mathfrak{p} \geq t$.
- (c) Assume that $\mathfrak{p} \in \operatorname{Spec} R$ such that $\dim R/\mathfrak{p} = t$. Prove the following statements.
 - (i) $\mathfrak{p} \in \operatorname{Att}_{R}(\operatorname{H}^{t}_{I}(R)).$
 - (ii) $\operatorname{H}^t_I(R/\mathfrak{p}) \neq 0.$
 - (iii) $\sqrt{I + \mathfrak{p}} = \mathfrak{m}.$
- 3. Let R be a Noetherian ring and let M be a finitely generated R-module. For an ideal \mathfrak{a} of R, set $\operatorname{cd}(\mathfrak{a}, M) := \sup\{i \in \mathbb{N}_0 : \operatorname{H}^i_{\mathfrak{a}}(M) \neq 0\}$. Assume that $\operatorname{cd}(\mathfrak{a}, M) > 0$. Prove the following statements.
 - (a) There is an integer j such that $H^j_{\mathfrak{a}}(M)$ is not finitely generated.
 - (b) If we set $cd(\mathfrak{a}) := sup\{cd(\mathfrak{a}, N) : N \text{ is an } R \text{-module}\}$, then $cd(\mathfrak{a}) = cd(\mathfrak{a}, R)$.
- 4. Let (R, \mathfrak{m}) be a Noetherian local ring. Let

$$0 \longrightarrow K \longrightarrow M \longrightarrow N \longrightarrow 0$$

be an exact sequence of finitely generated R-modules. Assume that $d := \dim M$ and that $\operatorname{H}^d_{\mathfrak{m}}(K)$ is finitely generated. Show that if $\mathfrak{p} \in \operatorname{Supp} M$ with $\dim R/\mathfrak{p} = d$, then $\mathfrak{p} \in \operatorname{Ass} N$.

5. Suppose (R, \mathfrak{m}) is a Noetherian local ring. Show that for each finitely generated R-module M and any $\mathfrak{p} \in \operatorname{Supp} M$,

 $\operatorname{depth} M \leq \operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} + \operatorname{dim} R/\mathfrak{p} \leq \operatorname{dim} M.$

GOOD LUCK.