Teacher Training University Faculty of Mathematical Sciences

PHD QUALIFY EXAM, 1386 Algebraic Geometry

All varieties are considered over an algebraically closed field k.

- **1.** If X and Y are affine varieties, show that $X \times Y$ is also an affine variety, and, if X and Y are irreducible, then $X \times Y$ is irreducible.
- **2.** Find the coordinate ring of $X \times Y$ in terms of the coordinate rings of X and Y. Conclude that if $P \in k[x_1, \dots, x_n]$ and $Q \in k[y_1, \dots, y_m]$ are prime ideals, then P + Q is a prime ideal in $k[x_1, \dots, x_n, y_1, \dots, y_m]$.
- **3.** Briefly, prove that if $X \subseteq \mathbb{P}^m$ is a quasi-projective variety, then X is birational to a hypersurface in \mathbb{P}^m for some m.
- 4. If X is a quasi-projective variety and $x \in X$, then x has a neighborhood isomorphic to some affine variety.
- 5. Prove that any finite morphism of an affine variety is surjective.
- $\mathcal{R}. \ \mathcal{Z}. \ \mathcal{N}$ anhandi