PhD comprehensive exam, Ordibehesht 1390 Tarbiat Moallem University, Faculty of Mathematical Sciences and Computer Commutative Algebra II

Throughout all rings are commutative with $1 \neq 0$.

- 1. Find an example for each of the following.
 - (i) A regular ring which is not integral domain.
 - (ii) A universally catenary ring which is not Cohen-Macaulay.
 - (iii) A non-regular local ring (R, \mathfrak{m}) such that $R_{\mathfrak{p}}$ is regular for any $\mathfrak{p} \in \operatorname{Spec} R \setminus \{\mathfrak{m}\}.$
 - (iv) A Gorenstein local ring which is not complete intersection.
- 2. Let R be a regular local ring and let I be a proper ideal of R. Prove the following statements.
 - (a) If R/I is regular, then $I = \sum_{i=1}^{n} Rx_i$, for some x_1, \dots, x_n which is part of a minimal generating set for the maximal ideal of R.
 - (b) R/I is Gorenstein if and only if $\operatorname{Ext}_{R}^{i}(R/I, R) \cong R/I$ whenever $i = \dim R \dim R/I$, and $\operatorname{Ext}_{R}^{i}(R/I, R) = 0$ otherwise.
- 3. Assume that (R, \mathfrak{m}) is a Noetherian local ring and that M and N are finitely generated non-zero R-modules of finite projective dimensions. Assume that Tor $_{i}^{R}(M, N) = 0$ for all i > 0. Prove that
 - (i) proj.dim $_R(M \otimes_R N) = \text{proj.dim }_R M + \text{proj.dim }_R N$,
 - (ii) depth $(M \otimes_R N)$ = depth M proj.dim $_R N$.
- 4. Let (R, \mathfrak{m}) be a regular local ring which is a subring of a Noetherian local ring (A, \mathfrak{q}) with $\mathfrak{m}A \subseteq \mathfrak{q}$. Prove that A is flat over R if and only if $\operatorname{grade}(\mathfrak{m}A, A) = \dim R$. Deduce that if A is Cohen-Macaulay and

$$\dim R + \dim A/\mathfrak{m}A = \dim A,$$

then A is flat over R.

GOOD LUCK