

PhD comprehensive exam, Ordibehesht 1392

Commutative Algebra II

Throughout all rings are commutative with $1 \neq 0$.

- 1. Let K be a field, $R = K[X_1, \dots, X_n]$ the ring of polynomials in n indeterminates X_1, \dots, X_n with coefficients in K. Prove that, for any R-module M, proj.dim $R(M) \leq n$ and inj.dim $R(M) \leq n$.
- 2. Let (R, \mathfrak{m}) be a Noetherian local ring, M and N non-zero finitely generated R-modules. Let n be a positive integer.
 - (a) Prove that $(0:_R N)$ contains an *M*-regular sequence of length *n* if and only if $\operatorname{Ext}_{R}^{i}(N, M) = 0$, for all *i*, *i* < *n*.
 - (b) Assume that there exist an *M*-regular sequence of length *n* in $(0 :_R N)$ and that $(0 :_R N)$ is an **m**-primary ideal. Prove that, for any prime ideal **p** of *R* with dim $(R/\mathfrak{p}) = 1$, one has $\operatorname{Ext}_{R}^{i}(R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}, M_{\mathfrak{p}}) = 0$ for all i, i < n 1.
- 3. Let (R, \mathfrak{m}) be a *d* dimensional Noetherian local ring.
 - (a) Prove that if $\mathfrak{m} \notin \operatorname{Ass}_R(R/(x_1, \cdots, x_{d-1}))$ for all system of parameters x_1, \cdots, x_d of R, then R is Cohen-Macaulay.
 - (b) Assume that R is Cohen-Macaulay. Prove that, for any finitely generated R-module M, if $i \ge d$, then the *i*th syzygy module of a finite free resolution of M is a maximal Cohen-Macaulay R-module.
- 4. Let (R, \mathfrak{m}) be a Noetherian local ring, M an R-module. Prove that depth $R \leq \operatorname{grade}_R(M) + \dim_R(M) \leq \dim R$.