Tarbiat Moallem University Faculty of Mathematics and Computer Sciences

Commutative Algebra 2 1387/3/19

Throughout all rings are commutative Noetherian with $1 \neq 0$.

- **I.** Let A be a semilocal ring and let M be a finite A-module. Describe the three numerical invariants dim M, d(M) and $\delta(M)$ related to M. Prove that dim $M = d(M) = \delta(M)$. (*Give your proof as complete as possible.*)
- **II.** Let A be a ring, let M be a finite A-module and let I be an ideal of A such that $IM \neq M$. Prove that the following statements are equivalent:

(1) Ext $_{A}^{i}(N, M) = 0$ for all i < n and for any finite A-module N with Supp $_{A}(N) \subseteq V(I)$;

(2) $\operatorname{Ext}_{A}^{i}(A/I, M) = 0$ for all i < n;

(3) Ext $_{A}^{i}(N, M) = 0$ for all i < n and for some finite A-module N with Supp $_{A}(N) = \mathcal{V}(I)$;

(4) there exists an M-sequence of length n contained in I.

- **III.** Let (A, \mathfrak{m}) be a local ring and let M be a finite A-module. Prove that if inj.dim $M < \infty$ then inj.dim $M = \operatorname{depth} A$.
- IV. Let A be a local ring and M be a non–zero finite A–module. Suppose that proj.dim $M < \infty$. Prove that

 $\operatorname{proj.dim} M + \operatorname{depth} M = \operatorname{depth} A.$

good luck, Mohammad T. Dibaei.