

PhD comprehensive exam, Ordibehesht 1392

Commutative Algebra III

Throughout, R is a commutative Noetherian ring with $1_R \neq 0$.

Definition. Let (R, \mathfrak{m}) be a local ring. A finitely generated *R*-module *M* is called *Gorenstein* if it is maximal Cohen-Macaulay and has finite injective dimension.

- 1. Let (R, \mathfrak{m}) be a homomorphic image of a Gorenstein local ring. Prove the following statements.
 - (a) If inj.dim $(M) < \infty$, then M is a homomorphic image of a Gorenstein R-module.
 - (b) If inj.dim $(M) < \infty$, then there exists an exact sequence

 $0 \longrightarrow M_s \longrightarrow M_{s-1} \longrightarrow \cdots \longrightarrow M_0 \longrightarrow M \longrightarrow 0,$

where M_i is a Gorenstein *R*-module for all $i, 0 \le i \le s$.

2. Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring. Prove that if M is a Gorenstein R-module and N is a finitely generated R-module of finite projective dimension, then

$$\operatorname{Tor}_{i}^{R}(M,N) = 0$$

for all i > 0.

- 3. Let $R = \bigoplus_{n \in \mathbb{Z}} R_n$ be a graded ring such that (R_0, \mathfrak{m}_0) is local with infinite residue field R_0/\mathfrak{m}_0 . Assume that I is a graded ideal of R generated by elements of degree 1. Prove that if $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ are prime ideals of R such that $I \not\subseteq \mathfrak{p}_1 \cup \dots \cup \mathfrak{p}_n$, then $I \cap R_1 \not\subseteq \mathfrak{p}_1 \cup \dots \cup \mathfrak{p}_n$.
- 4. Let $R = \bigoplus_{n \ge 0} R_n$ be a graded ring and let M be a finitely generated R-module. Prove that there is a homogeneous element $x \in R_+$ such that $(0:_M x)_n \ne 0$ only for finitely many integers n (such element is called *superficial* for M). Show that if $R = R_0[R_1]$ and the residue field of R_0 is infinite, then we may choose $x \in R_1$.

Prove that if $\dim_R M > \dim_R R_0$, then $\dim_R (M/xM) = \dim_R M - 1$ for all superficial element $x \in R_+$ for M.