Teacher Training University Faculty of Mathematical Sciences

Time: 4 h

PHD QUALIFY EXAM, 1386 Homological Algebra 2

Throughout R is a commutative ring with $1 \neq 0$.

- **1.** Let (R, \mathfrak{m}) be a noetherian local ring and let M be an R-module. Denote $\mu^r(M) := \dim_{R/\mathfrak{m}} \operatorname{Ext}_R^r(R/\mathfrak{m}, M).$
 - i) Prove that, for any ideal $\mathfrak a$ of R and any R-module M,

 $\mu^2(M) \leq \mu^0(\operatorname{H}^2_{\mathfrak{a}}(M)) + \mu^1(\operatorname{H}^1_{\mathfrak{a}}(M)) + \mu^2(\operatorname{H}^0_{\mathfrak{a}}(M)).$

- ii) Assume that M is a finitely generated R-module and that \mathfrak{a} is an ideal generated by an M-regular sequence of length 2. Prove that $\mu^0(\mathrm{H}^2_\mathfrak{a}(M)) = \mu^2(M)$ and $\mu^1(\mathrm{H}^2_\mathfrak{a}(M)) = \mu^3(M)$. What is your idea about $\mu^r(\mathrm{H}^2_\mathfrak{a}(M)) = \mu^{r+2}(M)$ for all $r \geq 0$. Write down any comment, proof, or disproof about it.
- **2.** Assume that R is a noetherian ring and that M is a finite R-module. Denote $\mu^i(\mathfrak{p}, M) := \dim_{k(\mathfrak{p})} \operatorname{Ext}_{R_\mathfrak{p}}^i(k(\mathfrak{p}), M_\mathfrak{p})$. Prove that if $\mathfrak{p} \subset \mathfrak{q}$ are distinct prime ideals of R with no other prime ideals between them, then

$$\mu^{i}(\mathfrak{p}, M) \neq 0 \Longrightarrow \mu^{i+1}(\mathfrak{p}, M) \neq 0.$$

3. Let \mathfrak{a} be an ideal of a noetherian ring R and let M be an R-module. Assume that s is a non-negative integer and that $\operatorname{Ext}_{R}^{j}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{i}(M))$ is finitely generated for all $j \geq 0$ and all $i, 0 \leq i < s$. Prove that $\operatorname{Ext}_{R}^{s}(R/\mathfrak{a}, M)$ is finitely generates if and only if $\operatorname{Hom}_{R}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{s}(M))$ is finitely generated. (Here is a hint: set $E := E(M/\Gamma_{\mathfrak{a}}(M))$ and apply an induction argument

(Here is a hint: set $E := E(M/\Gamma_{\mathfrak{a}}(M))$ and apply an induction argumen on s.)

- **4.** Let R be a noetherian ring.
 - (i) Assume that A is a representable R–module. Show that $M \otimes_R A$ is representable.
 - (ii) Let $f : R \longrightarrow T$ be a ring homomorphism and let A be a representable T-module. Show that A is a representable R-module and

Att _R(A) = {
$$f^{-1}(\mathfrak{p}) : \mathfrak{p} \in \operatorname{Att}_{T}(A)$$
}

(ii) Let M be an R-module with dim $_R(M) < \infty$ and dim $(R/\operatorname{Ann}_R(M)) = \dim_R(M)$. Show that, for any ideal \mathfrak{a} of R,

$$\operatorname{H}^{n}_{\mathfrak{a}}(M) \cong \operatorname{H}^{n}_{\frac{\mathfrak{a}+\operatorname{Ann}_{R}(M)}{\operatorname{Ann}_{R}(M)}}(R/\operatorname{Ann}_{R}(M)) \otimes_{R} M,$$

where $n = \dim_R(M)$. Deduce that $\operatorname{H}^n_{\mathfrak{a}}(M)$ is a representable R-module.

- **5.** Let (R, \mathfrak{m}) be a noetherian local ring of dimension n and suppose that $\mu(\mathfrak{m}) := 1 + \operatorname{depth}(R)$. Prove that $\operatorname{H}^n_{\mathfrak{m}}(R) = E(R/\mathfrak{m})$. (Hint: Induction on depth (R).)
- 6. Let k be a field and let R = k[[x, y, u, v]]/(xu yv), and set I := (x, y)R. Prove that $H_I^3(R) = 0$ but $H_I^3(R) \neq 0$.

GOOD LUCK