Throughout R is a commutative ring with $1 \neq 0$.

1. Let (R, \mathfrak{m}) be a noetherian local ring and let M be an R-module. Denote $\mu^{r}(M):=\operatorname{dim}_{R / \mathfrak{m}} \operatorname{Ext}_{R}^{r}(R / \mathfrak{m}, M)$.
i) Prove that, for any ideal \mathfrak{a} of R and any R-module M,

$$
\mu^{2}(M) \leq \mu^{0}\left(\mathrm{H}_{\mathfrak{a}}^{2}(M)\right)+\mu^{1}\left(\mathrm{H}_{\mathfrak{a}}^{1}(M)\right)+\mu^{2}\left(\mathrm{H}_{\mathfrak{a}}^{0}(M)\right)
$$

ii) Assume that M is a finitely generated R-module and that \mathfrak{a} is an ideal generated by an M-regular sequence of length 2 . Prove that $\mu^{0}\left(\mathrm{H}_{\mathfrak{a}}^{2}(M)\right)=\mu^{2}(M)$ and $\mu^{1}\left(\mathrm{H}_{\mathfrak{a}}^{2}(M)\right)=\mu^{3}(M)$. What is your idea about $\mu^{r}\left(\mathrm{H}_{\mathfrak{a}}^{2}(M)\right)=\mu^{r+2}(M)$ for all $r \geq 0$. Write down any comment, proof, or disproof about it.
2. Assume that R is a noetherian ring and that M is a finite R-module. Denote $\mu^{i}(\mathfrak{p}, M):=\operatorname{dim}_{k(\mathfrak{p})} \operatorname{Ext}{ }_{R_{\mathfrak{p}}}^{i}\left(k(\mathfrak{p}), M_{\mathfrak{p}}\right)$. Prove that if $\mathfrak{p} \subset \mathfrak{q}$ are distinct prime ideals of R with no other prime ideals between them, then

$$
\mu^{i}(\mathfrak{p}, M) \neq 0 \Longrightarrow \mu^{i+1}(\mathfrak{p}, M) \neq 0
$$

3. Let \mathfrak{a} be an ideal of a noetherian ring R and let M be an R-module. Assume that s is a non-negative integer and that $\operatorname{Ext}_{R}^{j}\left(R / \mathfrak{a}, \mathrm{H}_{\mathfrak{a}}^{i}(M)\right)$ is finitely generated for all $j \geq 0$ and all $i, 0 \leq i<s$. Prove that $\operatorname{Ext}_{R}^{s}(R / \mathfrak{a}, M)$ is finitely generates if and only if $\operatorname{Hom}_{R}\left(R / \mathfrak{a}, \mathrm{H}_{\mathfrak{a}}^{s}(M)\right)$ is finitely generated.
(Here is a hint: set $E:=E\left(M / \Gamma_{\mathfrak{a}}(M)\right)$ and apply an induction argument on s.)
4. Let R be a noetherian ring.
(i) Assume that A is a representable R-module. Show that $M \otimes_{R} A$ is representable.
(ii) Let $f: R \longrightarrow T$ be a ring homomorphism and let A be a representable T-module. Show that A is a representable R-module and

$$
\operatorname{Att}_{R}(A)=\left\{f^{-1}(\mathfrak{p}): \mathfrak{p} \in \operatorname{Att}_{T}(A)\right\}
$$

(ii) Let M be an R-module with $\operatorname{dim}_{R}(M)<\infty$ and $\operatorname{dim}\left(R / \operatorname{Ann}_{R}(M)\right)=$ $\operatorname{dim}_{R}(M)$. Show that, for any ideal \mathfrak{a} of R,

$$
\mathrm{H}_{\mathfrak{a}}^{n}(M) \cong \mathrm{H}_{\frac{\mathfrak{a}+\operatorname{Ann}_{R^{(M)}}}{\operatorname{Ann}_{R}(M)}}\left(R / \operatorname{Ann}_{R}(M)\right) \otimes_{R} M
$$

where $n=\operatorname{dim}_{R}(M)$. Deduce that $H_{\mathfrak{a}}^{n}(M)$ is a representable $R-$ module.
5. Let (R, \mathfrak{m}) be a noetherian local ring of dimension n and suppose that $\mu(\mathfrak{m}):=1+$ depth (R). Prove that $H_{\mathfrak{m}}^{n}(R)=E(R / \mathfrak{m})$. (Hint: Induction on depth (R).)
6. Let k be a field and let $R=k[[x, y, u, v]] /(x u-y v)$, and set $I:=(x, y) R$. Prove that $\mathrm{H}_{I}^{3}(R)=0$ but $\mathrm{H}_{I}^{3}(R) \neq 0$.

GOOD LUCK

