THE SIMPLICIAL COMPLEX FOR THE IDEAL OF t-MINORS OF GENERIC PLURICIRCULANT MATRIX

R. Zaare-Nahandi

Let k be a field containing the n-th roots of unity where $\operatorname{char}(k) \nmid n$. Let \mathbf{P} be a pluricirculant matrix with b blocks, generic over k, i.e., a concatenation of b generic $n \times n$ circulant matrices. Then, \mathbf{P} is equivalent to a matrix \mathbf{D} which is a concatenation of generic diagonal matrices. The ideal of t-minors of \mathbf{D} is generated by squarefree monomials to which a simplicial complex is associated and the quotient ring is Stanley-Reisner. The complex is always pure and is shellable if $b=1$. For $b>1$ the complex is never Cohen-Macaulay. Let \mathbf{P}_{t} be the submatrix of the first t rows of \mathbf{P}. By obtaining relevant Hilbert series formulae, it is shown that the set of "weakly ordered" maximal minors of \mathbf{P}_{t} forms a minimal Gröbner basis for the ideal of t minors of \mathbf{P}, providing an affirmative answer to a conjecture, for such a ground field k.

