On the eigensharp and almost eigensharp graphs

E. Ghorbani^a H. R. Maimani^{a,b}

^a Department of Mathematics, Shahid Rajaee University (SRU), Tehran,Iran
^b Institute for Studies in Theoretical Physics and Mathematics(IPM)
P. O. Box 19395-5749, Tehran, Iran

The minimum number of complete bipartite subgraphs needed to partition the edges of a graph G is denoted by b(G). known lower bound on b(G) is at least the maximum of the number of positive and negative eigenvalues of the adjacency matrix A of G; that is $b(G) \ge max\{n_+(G), n_-(G)\}$. When the equality is attained G is said to be eigensharp . Eigensharp graphs include complete graphs, trees, cycle C_n with $n \ne 4k$, mobius ladder M_n with n = 3 or $n \ne 4k$, and some cartesian products of cycles. Also the complement of every path is eigensharp.

In this paper we prove that n-cube Q_n (*n* is odd), wheels W_n (n = 5 or $n \neq 4k + 1$), $W_n - M(M)$ is a maximal matching), and some products of some graphs are eigensharp. Also we introduced the concept of almost eigensharp graph (graphs with $b(G) = (\{n_+(G), n_-(G)\} + 1)$, and study these collection of graphs.

References

1. T. Kratzke, B. Reznick, and D. West, Transacions of the American Mathematical Society, 308 (1988), 637-653

2. V. Watts. A tree whose complement is not eigensharp, Linear Algebra and its Application, 306(2000) 183-188