A Lemma on Polynomials Modulo p^{m} and Applications to Coding Theory

Richard M. Wilson
Department of Mathematics
California Institute of Technology USA

The following lemma can be proved in a number of elementary ways: Let p be a prime, and e and m positive integers. Then there exists a polynomial

$$
w(x)=c_{0}+c_{1} x+c_{2}\binom{x}{2}+\ldots+c_{d}\binom{x}{d}
$$

of degree $d \leq(m(p-1)+1) p^{e-1}-1$ so that for all integers x

$$
w(x) \equiv \begin{cases}1\left(\bmod p^{m}\right) & \text { if } x \equiv 0\left(\bmod p^{e}\right), \\ 0\left(\bmod p^{m}\right) & \text { if } x \not \equiv 0\left(\bmod p^{e}\right) .\end{cases}
$$

The coefficients c_{i} are integers and, moreover,

$$
c_{i} \equiv 0 \quad\left(\bmod p^{\ell}\right)
$$

whenever $i \geq(\ell(p-1)+1) p^{e-1}$. We give several applications of the lemma to coding theory. One is a quick proof of the fact that all codewords in the r-th order binary Reed-Muller code of length 2^{n} have weights divisible by $2^{\lfloor(n-1) / r\rfloor}$. The number of p-ary codewords with weights in one or several congruence classes modulo p^{m} is discussed. We give an extension of McEliece's theorem (on the power of p that divides the weights of all codewords in a cyclic code) to cyclic codes over the integers modulo p^{e} with respect to the Lee metric.

