TOPOLOGICAL PERSISTENCE

Afra Zomorodian

Stanford University

April 28, 2004

PLAN

- Main approach: "Go with the flow" Mehrdad
- Today: Topological Persistence
- Tomorrow: Shape Description via Persistent Homology
 - Theory
 - Practice

OVERVIEW

- Simplicial Complexes
- Homology
- Computing Homology
- Filtrations
- Persistent Homology
- Computing Persistence

SIMPLEX

- S, a set of points
- A k-simplex is a subset of S of size k + 1.
- A simplex may be realized geometrically as the convex hull of k+1 affinely independent points in \mathbb{R}^d , $d \geq k$.
- An orientation is an equivalence class of orderings $[\sigma]$.

SIMPLICIAL COMPLEX

- A simplex τ defined by $T \subseteq S$ is a face of σ and has σ as a coface.
- A simplicial complex is a set K of simplices on S such that if $\sigma \in K$, then all of σ 's faces are in K.
- Realized simplicial complexes have simplices that match along faces.

HOMOLOGY

- Algebraization of first layer of geometry in structures
- How cells of dimension n attach to cells of dimension n-1
- This lecture: cells are simplices
- Con:
 - Coarse
 - Less transparent
 - More machinery
- Pro:
 - Combinatorial
 - Finite description
 - Computable

CHAIN GROUP

- Simplicial complex K
- k-chain: $c = \sum_i n_i[\sigma_i], n_i \in \mathbb{Z}, \sigma_i \in K$ (like a path)
- $[\sigma] = -[\tau]$ if $\sigma = \tau$ and σ and τ have different orientations.
- The kth chain group C_k of K is the free abelian group on its set of oriented k-simplices

BOUNDARY OPERATOR

• The boundary operator $\partial_k : \mathbf{C}_k \to \mathbf{C}_{k-1}$ is a homomorphism defined linearly on a chain c by its action on any simplex $\sigma = [v_0, v_1, \dots, v_k] \in c$,

$$\partial_k \sigma = \sum_i (-1)^i [v_0, v_1, \dots, \hat{v_i}, \dots, v_k],$$

where $\hat{v_i}$ indicates that v_i is deleted from the sequence.

• (Theorem) $\partial_{k-1}\partial_k = 0$, for all k.

ORIENTED BOUNDARIES

- $\bullet \ \partial_1[a,b] = b a.$
- $\partial_2[a,b,c] = [b,c] [a,c] + [a,b] = [b,c] + [c,a] + [a,b].$
- $\partial_3[a,b,c,d] = [b,c,d] [a,c,d] + [a,b,d] [a,b,c].$
- $\partial_1 \partial_2 [a, b, c] = [c] [b] [c] + [a] + [b] [a] = 0.$

CHAIN COMPLEX

 The boundary operator connects the chain groups into a chain complex C*:

$$\ldots \to \mathsf{C}_{k+1} \xrightarrow{\partial_{k+1}} \mathsf{C}_k \xrightarrow{\partial_k} \mathsf{C}_{k-1} \to \ldots$$

CYCLE GROUP

- Let c be a k-chain
- If it has no boundary, it is a *k*-cycle
- $\partial_k c = \emptyset$, so $c \in \ker \partial_k$
- The *k*th cycle group is

$$\mathsf{Z}_k = \ker \partial_k = \{c \in \mathsf{C}_k \mid \partial_k c = \emptyset\}.$$

BOUNDARY GROUP

- Let b be a k-chain
- If b is a boundary of something, it is a k-boundary.
- The *k*th boundary group is

$$B_k = \text{im } \partial_{k+1} = \{ c \in C_k \mid \exists d \in C_{k+1} : c = \partial_{k+1} d \}.$$

SIMPLICIAL HOMOLOGY

• The *k*th homology group is

$$\mathsf{H}_k = \mathsf{Z}_k/\mathsf{B}_k = \ker \partial_k/\mathrm{im}\,\partial_{k+1}.$$

• Betti Numbers: $\beta_k = \operatorname{rank} \mathsf{H}_k = \operatorname{rank} \mathsf{Z}_k - \operatorname{rank} \mathsf{B}_k$

INTERPRETATION

- Subcomplexes of \mathbb{S}^3 are torsion-free.
- Alexander Duality:
 - $-\beta_0$ measures the number of components of the complex.
 - β_1 is the rank of a basis for the tunnels.
 - β_2 counts the number of voids in the complex.

COMPUTING HOMOLOGY

- Compute a basis for ker ∂_k to get rank Z_k
- Compute a basis for im ∂_{k+1} to get rank B_k
- $\partial_k : C_k \to C_{k-1}$ is linear, so it has a matrix
- Use oriented simplices as bases for domain and codomain, so matrix is $m_{k-1} \times m_k$
- M_k is the standard matrix representation for ∂_k

EXAMPLE

$$M_1 = egin{bmatrix} \partial_1 & ab & bc & cd & ad & ac \ \hline a & -1 & 0 & 0 & -1 & -1 \ b & 1 & -1 & 0 & 0 & 0 \ c & 0 & 1 & -1 & 0 & 1 \ d & 0 & 0 & 1 & 1 & 0 \ \end{bmatrix}$$

ELEMENTARY OPERATIONS

- The elementary row operations on M_k are
 - 1. exchange row i and row j,
 - 2. multiply row i by -1,
 - 3. replace row i by (row i) + q(row j), where q is in the coefficient ring and $j \neq i$.
- Similar elementary column operations on columns
- Effect: change of basis, but no change in rank
 - Column operation (3): replaces basis element e_i with $e_i + qe_j$
 - Row operation (3): replaces basis element \hat{e}_j with $\hat{e}_j q\hat{e}_i$.

REDUCTION ALGORITHM

• Like Gaussian elimination, we keep changing the basis to get to the (Smith) normal form:

$$\tilde{M}_k = \begin{bmatrix} b_1 & 0 & & \\ & \ddots & & 0 \\ \hline 0 & b_{l_k} & & \\ & & 0 & & 0 \end{bmatrix}$$

- $l_k = \operatorname{rank} M_k = \operatorname{rank} \tilde{M}_k, b^i \ge 1$
- $b_i | b_{i+1}$ for all $1 \le i < l_k$

NORMAL FORM

$$\tilde{M}_{k} = \begin{bmatrix} \partial_{k} & e_{1} & \cdots & e_{l_{k}} & e_{l_{k}+1} & \dots & e_{m_{k}} \\ \hat{e}_{1} & b_{1} & & 0 & & & \\ \vdots & & \ddots & & & 0 \\ \hat{e}_{l_{k}} & 0 & & b_{l_{k}} & & & \\ \hat{e}_{l_{k}+1} & & & & & \\ \vdots & & 0 & & & 0 \\ \hat{e}_{m_{k-1}} & & & & & \end{bmatrix}$$

- 1. the torsion coefficients of H_{k-1} are $b_i \geq 1$.
- 2. $\{e_i \mid l_k + 1 \le i \le m_k\}$ is a basis for Z_k . $\Rightarrow \operatorname{rank} Z_k = m_k l_k$.
- 3. $\{b_i\hat{e}_i \mid 1 \leq i \leq l_k\}$ is a basis for B_{k-1} . $\Rightarrow \operatorname{rank} \mathsf{B}_k = l_{k+1}$.
- 4. $\beta_k = \operatorname{rank} \mathbf{Z}_k \operatorname{rank} \mathbf{B}_k = m_k l_k l_{k+1}$

REDUCED EXAMPLE

$$ilde{M}_1 = egin{bmatrix} cd & cd & bc & ab & z_1 & z_2 \ \hline d-c & 1 & 0 & 0 & 0 & 0 \ c-b & 0 & 1 & 0 & 0 & 0 \ b-a & 0 & 0 & 1 & 0 & 0 \ a & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

• $z_1 = ad - bc - cd - ab$, $z_2 = ac - bc - ab$, and rank $\mathbf{Z}_1 = 2$

REDUCED EXAMPLE

$$ilde{M}_2 = egin{bmatrix} -abc & -acd + abc \ ac - bc - ab & 1 & 0 \ ad - cd - bc - ab & 0 & 1 \ cd & 0 & 0 \ bc & 0 & 0 \ ab & 0 & 0 \end{bmatrix}$$

•
$$\operatorname{rank} \mathsf{B}_1 = 2$$
, so $\beta_1 = \operatorname{rank} \mathsf{H}_1 = 2 - 2 = 0$

FILTRATIONS

- A subcomplex of K is a simplicial complex $L \subseteq K$.
- A filtration of a complex K is a nested sequence of complexes $\emptyset = K^0 \subseteq K^1 \subseteq \ldots \subseteq K^m = K$.
- *K* is a filtered complex.
- Natural:
 - Cěch-like complexes
 - Density measure
 - Manifold equipped with Morse function
 - Demo
- Looking for features in this growing space

PERSISTENCE

Persistent Homology groups

$$\mathsf{H}_k^{\ell,p} = \mathsf{Z}_k^\ell/(\mathsf{B}_k^{\ell+p}\cap\mathsf{Z}_k^\ell)$$

- $\beta_k^{\ell,p} = \operatorname{rank} \mathsf{H}_k^{\ell,p}$.
- The *persistence* of a cycle is its lifetime: death birth 1.
- As we increase p, cycles are killed earlier, so their persistence for p is lower.
- Pairing:
 - positive: creates k-cycle
 - negative: destroys (k-1)-cycle

LIFETIME REGIONS

- $\bullet \ \mathsf{H}_k^{l,p} = \mathsf{Z}_k^l \, / \, (\mathsf{B}_k^{l+p} \cap \mathsf{Z}_k^l)$
- Basis element $z + \mathsf{B}^l_k$ lives during $l \in [i,j)$
- $z \notin \mathsf{B}_k^l$ for $l \leq j$
- Therefore, $z \notin \mathsf{B}_k^{l+p}$ for l+p < j.
- $p \ge 0$
- $l \geq i$

TRIANGLE

- $p \ge 0$
- $l \ge i$
- l < j

VISUALIZATION

• Original algroithm for \mathbb{Z}_2 -homology, subcomplexes of \mathbb{S}^3

REORDERING

CMY COLOR SPACE

TOPOLOGY MAPS

Demo

PERSISTENCE COMPLEX

•
$$\mathbf{C}_*^0 \xrightarrow{f^0} \mathbf{C}_*^1 \xrightarrow{f^1} \mathbf{C}_*^2 \xrightarrow{f^2} \cdots$$

• Expanding:

ARTIN-REES CONSTRUCTION

- $\mathcal{M} = \{M^i, \varphi^i\}_{i \geq 0}$ defined over R
- Define a graded R[t]-module over by

$$\alpha(\mathcal{M}) = \bigoplus_{i=0}^{\infty} M^i,$$

- R-module structure is the sum on the individual components
- Action of t is

$$t \cdot (m^0, m^1, m^2, \ldots) = (0, \varphi^0(m^0), \varphi^1(m^1), \varphi^2(m^2), \ldots).$$

• t simply shifts elements of the module up in the gradation.

STRUCTURE

- Equivalent categories
- \bullet R, a field
- R[t] is a PID
- Structure Theorem for graded R[t]-modules:

$$\left(\bigoplus_{i=1}^n \Sigma^{\alpha_i} F[t]\right) \oplus \left(\bigoplus_{j=1}^m \Sigma^{\gamma_j} F[t]/(t^{n_j})\right).$$

• Intervals:

$$-\Sigma^{\alpha_i}F[t]\mapsto (\alpha^i,\infty)$$

$$- \Sigma^{\gamma_j} F[t]/(t^{n_j}) \mapsto (\gamma_j, \gamma_j + n_j)$$

COMPUTING PERSISTENCE

• Degrees of homogeneous elements:

a	b	c	d	ab	bc	cd	ad	ac	abc	acd
0	0	1	1	1	1	2	2	3	4	5

• $\deg \hat{e}_i + \deg M_k(i,j) = \deg e_j$

COLUMN ECHELON FORM

$$ilde{M}_1 = egin{bmatrix} & cd & bc & ab & z_1 & z_2 \ \hline d & {
m t} & 0 & 0 & 0 & 0 \ c & t & 1 & 0 & 0 & 0 \ b & 0 & t & {
m t} & 0 & 0 \ a & 0 & 0 & t & 0 & 0 \end{bmatrix}$$

- Only column operations of type (1, 3)
- $z_1 = ad cd t \cdot bc t \cdot ab$
- $z_2 = ac t^2 \cdot bc t^2 \cdot ab$
- $\{z_1, z_2\}$ form homogeneous basis for Z_1
- $\operatorname{rank} M_k = \operatorname{rank} \mathsf{B}_{k-1}$ is number of pivots

ECHELON FORM LEMMA

$$ilde{M}_1 = \left[egin{array}{c|ccccc} cd & bc & ab & z_1 & z_2 \\ \hline d & t & 0 & 0 & 0 & 0 \\ c & t & 1 & 0 & 0 & 0 \\ b & 0 & t & t & 0 & 0 \\ a & 0 & 0 & t & 0 & 0 \end{array}
ight]$$

- (Lemma) The pivots in column-echelon form are the same as the diagonal elements in normal form. Moreover, the degree of the basis elements on pivot rows is the same in both forms.
- If only interested in degree of basis elements, read them off the column echelon form.

BASIS CHANGE LEMMA

- Represent ∂_{k+1} in terms of the basis computed for Z_k
- $\bullet \ \partial_k \partial_{k+1} = \emptyset, M_k M_{k+1} = 0$
- (Lemma) To represent ∂_{k+1} relative to the standard basis for C_{k+1} and the basis computed for Z_k , simply delete rows in M_{k+1} that correspond to pivot columns in \tilde{M}_k .

PROOF

- Replace column i by (column i) + q(column j) to eliminate element in pivot row j
- \equiv replacing column basis element e_i by $e_i + qe_j$ in M_k
- \equiv replacing row j with (row j) q(row i) in M_{k+1}
- ullet But row j is eventually zero and row i is not changed. QED

ALGORITHM

- No need for row operations
- Free columns correspond to positive simplices
- Pivot columns correspond to negative simplices
- No need for matrix representation
- Sparse matrix computation of Betti numbers based on persistence

CONCLUSION

- Over fields, persistent homology of a filtration has a compact description
- The algorithm is $O(n^3)$, but fast in practice
- Papers available off graphics.stanford.edu/~afra
 - Topological Persistence and Simplification FOCS '00, DCG '02
 - Computing Persistent Homology SoCG '04
- C code available
- CGAL package soon